208 research outputs found

    Resetting a functional G1 nucleus after mitosis

    Get PDF
    © The Author(s) 2015. The maintenance of the correct cellular information goes beyond the simple transmission of an intact genetic code from one generation to the next. Epigenetic changes, topological cues and correct protein-protein interactions need to be re-established after each cell division to allow the next cell cycle to resume in the correct regulated manner. This process begins with mitotic exit and re-sets all the changes that occurred during mitosis thus restoring a functional G1 nucleus in preparation for the next cell cycle. Mitotic exit is triggered by inactivation of mitotic kinases and the reversal of their phosphorylation activities on many cellular components, from nuclear lamina to transcription factors and chromatin itself. To reverse all these phosphorylations, phosphatases act during mitotic exit in a timely and spatially controlled manner directing the events that lead to a functional G1 nucleus. In this review, we will summarise the recent developments on the control of phosphatases and their known substrates during mitotic exit, and the key steps that control the restoration of chromatin status, nuclear envelope reassembly and nuclear body re-organisation. Although pivotal work has been conducted in this area in yeast, due to differences between the mitotic exit network between yeast and vertebrates, we will mainly concentrate on the vertebrate system.BBSRC grant (BB/K017632/1)

    Repo-Man-PP1:A link between chromatin remodelling and nuclear envelope reassembly

    Get PDF
    Coordination of late mitotic events is crucial for the maintenance of genome stability and for the control of gene expression after cell division. Reversible protein phosphorylation regulates this process by de-phosphorylation of mitotic phospho-proteins in a sequential and coordinated manner: this allows an orderly sequence of events to take place during mitotic exit. We have identified Repo-Man/PP1 as a phosphatase complex that regulates temporally and spatially chromatin re-organization and nuclear envelope re-formation during anaphase-telophase

    Chromosome Clustering in mitosis by the nuclear protein Ki-67

    Get PDF
    © 2021 The Author(s). Ki-67 is highly expressed in proliferating cells, a characteristic that made the protein a very important proliferation marker widely used in the clinic. However, the molecular functions and properties of Ki-67 remained quite obscure for a long time. Only recently important discoveries have shed some light on its function and shown that Ki-67 has a major role in the formation of mitotic chromosome periphery compartment, it is associated with protein phosphatase one (PP1) and regulates chromatin function in interphase and mitosis. In this review, we discuss the role of Ki-67 during cell division. Specifically, we focus on the importance of Ki-67 in chromosome individualisation at mitotic entry (prometaphase) and its contribution to chromosome clustering and nuclear remodelling during mitotic exit.Wellcome Trust. Investigator award 210742/Z/18/Z (Chromatin Re-Organisation at the Transition from Mitosis to G1: How Phospho-Switches Regulate the Process in Space and Time); Brunel University London (CHMLS scholarship)

    The Role of Phosphatases in Nuclear Envelope Disassembly and Reassembly and Their Relevance to Pathologies

    Get PDF
    The role of kinases in the regulation of cell cycle transitions is very well established, however, over the past decade, studies have identified the ever-growing importance of phosphatases in these processes. It is well-known that an intact or otherwise non-deformed nuclear envelope (NE) is essential for maintaining healthy cells and any deviation from this can result in pathological conditions. This review aims at assessing the current understanding of how phosphatases contribute to the remodelling of the nuclear envelope during its disassembling and reformation after cell division and how errors in this process may lead to the development of diseases.The Wellcome Trus
    corecore