6 research outputs found

    Revisiting Topic-Guided Language Models

    Full text link
    A recent line of work in natural language processing has aimed to combine language models and topic models. These topic-guided language models augment neural language models with topic models, unsupervised learning methods that can discover document-level patterns of word use. This paper compares the effectiveness of these methods in a standardized setting. We study four topic-guided language models and two baselines, evaluating the held-out predictive performance of each model on four corpora. Surprisingly, we find that none of these methods outperform a standard LSTM language model baseline, and most fail to learn good topics. Further, we train a probe of the neural language model that shows that the baseline's hidden states already encode topic information. We make public all code used for this study.Comment: Published in Transactions on Machine Learning Research (TMLR) (12/2023

    An Invariant Learning Characterization of Controlled Text Generation

    Full text link
    Controlled generation refers to the problem of creating text that contains stylistic or semantic attributes of interest. Many approaches reduce this problem to training a predictor of the desired attribute. For example, researchers hoping to deploy a large language model to produce non-toxic content may use a toxicity classifier to filter generated text. In practice, the generated text to classify, which is determined by user prompts, may come from a wide range of distributions. In this paper, we show that the performance of controlled generation may be poor if the distributions of text in response to user prompts differ from the distribution the predictor was trained on. To address this problem, we cast controlled generation under distribution shift as an invariant learning problem: the most effective predictor should be invariant across multiple text environments. We then discuss a natural solution that arises from this characterization and propose heuristics for selecting natural environments. We study this characterization and the proposed method empirically using both synthetic and real data. Experiments demonstrate both the challenge of distribution shift in controlled generation and the potential of invariance methods in this setting.Comment: To appear in the 2023 Conference of the Association for Computational Linguistics (ACL 2023

    Replication Data for: Price Discrimination in The Princeton Review’s Online SAT Tutoring Service

    No full text
    This dataset was used for this paper published on 9/1/2015 on Technology Science. http://techscience.org/a/2015090102
    corecore