12 research outputs found

    The Fractional Quantum Hall Effect of Tachyons in a Topological Insulator Junction

    Full text link
    We have studied the tachyonic excitations in the junction of two topological insulators in the presence of an external magnetic field. The Landau levels, evaluated from an effective two-dimensional model for tachyons, and from the junction states of two topological insulators, show some unique properties not seen in conventional electrons systems or in graphene. The ν=1/3\nu=1/3 fractional quantum Hall effect has also a strong presence in the tachyon system.Comment: 5 pages, 3 figure

    The Fractional Quantum Hall States of Dirac Electrons in Graphene

    Full text link
    We have investigated the fractional quantum Hall states for the Dirac electrons in a graphene layer in different Landau levels. The relativistic nature of the energy dispersion relation of the electrons in the graphene significantly modifies the inter-electron interactions. This results in a specific dependence of the ground state energy and the energy gaps for electrons on the Landau level index. For the valley-polarized states, i.e. at \nu =1/m, m being an odd integer, the energy gaps have the largest values in the n=1 Landau level. For the valley-unpolarized states, e.g., for the 2/3 state, the energy gaps are suppressed for the n=1 Landau level as compared to the n=0 level. For both the n=1 and n=0 Landau levels the ground state of the 2/3 system is fully valley-unpolarized.Comment: accepted for publication in Phys. Rev. Let

    Superluminal tachyon-like excitations of Dirac fermions in a topological insulator junction

    No full text
    We have considered a system of two topological insulators and have determined the properties of the surface states at the junction. Here we report that these states, under certain conditions exhibit superluminous (tachyonic) dispersion of the Dirac fermions. Although superluminal excitations are known to exist in optical systems, this is the first demonstration of possible tachyonic excitations in a purely electronic system. The first ever signature of tachyons could therefore be found experimentally in a topological insulator junction

    Stable Pfaffian State in Bilayer Graphene

    No full text
    corecore