7 research outputs found

    Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology

    Get PDF
    The aim of this paper was to establish the causes of the heterogeneity of the chemical composition of the metal obtained by the LC technology. The powdered raw material was made from a monolithic alloy, which was fused by the SLM, the initial raw material was a laboratory melting metal of a low-carbon chromium-manganese-nickel composition based on iron. To determine the distribution pattern of alloying chemical elements in the resulting powder, electron-microscopic images of thin sections were combined with X-ray analysis data on the cross-sections of the powder particles. As a result, it was found that transition (Mn, Ni) and heavy (Mo) metals are uniformly distributed over the powder particle cross-sections, and the mass fraction of silicon (Si) is uneven: in the center of the particles, it is several times larger in some cases. The revealed feature in the distribution of silicon is supposedly due to the formation of various forms of SiO4 upon the cooling of the formed particles. The internal structure of the manufactured powder is represented by the martensitic structure of stack morphology. After laser fusion, etched thin sections revealed traces of segregation heterogeneity in the form of a grid with cells of ~ 200 μm

    Comparing conductance quantization in quantum wires and Quantum Hall systems

    Full text link
    We propose a new calculation of the DC conductance of a 1-dimensional electron system described by the Luttinger model. Our approach is based on the ideas of Landauer and B\"{u}ttiker and on the methods of current algebra. We analyse in detail the way in which the system can be coupled to external reservoirs. This determines whether the conductance is renormalized or not. We show that although a quantum wire and a Fractional Quantum Hall system are described by the same effective theory, their coupling to external reservoirs is different. As a consequence, the conductance in the wire is quantized in integer units of e2/he^2/h per spin orientation whereas the Hall conductance allows for fractional quantization.Comment: 3 pages, LaTe

    The torsional fundamental band and high-J rotational spectra of the ground, first and second excited torsional states of acetone

    No full text
    We present a new global study of the millimeter, submillimeter and far-infrared (FIR) spectra involving the three lowest torsional states of acetone ((CH3)2CO). New microwave measurements have been carried out between 34 and 940 GHz using spectrometers in IRA NASU (Ukraine), and PhLAM Lille (France). The FIR spectrum of acetone has been recorded on the AILES beamline of the SOLEIL synchrotron facility. The new data involving torsion–rotation transitions with J up to 90 and Ka up to 52 were combined with previously published measurements and analyzed using a model developed recently to study the high resolution spectra of molecules with two equivalent methyl rotors and C2v symmetry at equilibrium (PAM_C2v_2tops program). The final fit included 117 parameters to give an overall weighted root-mean-square deviation of 0.85 for the dataset consisting of 29,584 microwave and 1116 FIR line frequencies belonging, respectively, to the three lowest torsional states (ν12,ν17) = (0,0), (1,0), (0,1) and to the observed fundamental band associated with the methyl-top torsion mode (ν12,ν17) = (0,1) ← (0,0). The high values of rotational quantum numbers involved in this study provide an opportunity to test the performance of the PAM_C2v_2tops program approach for the case of highly excited rotational states.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe
    corecore