8 research outputs found

    The Effect of PAI-1 4G/5G Polymorphism and Clinical Factors on Coronary Artery Occlusion in Myocardial Infarction

    Get PDF
    Objective. Data on the impact of PAI-1-675 4G/5G genotype for fibrinolysis during myocardial infarction are inconsistent. The aim of our study was to evaluate the association of clinical and genetic (PAI-1-675 4G/5G polymorphism) factors with coronary artery occlusion in patients with myocardial infarction. Materials and Methods. PAI-1-675 4G/5G detection was achieved by using Sanger sequencing in a sample of patients hospitalized for stent implantation due to myocardial infarction. We categorized the patients into two groups: patients with coronary artery occlusion and patients without coronary artery occlusion according to angiographic evaluation. Results. We identified n=122 (32.4%) 4G/4G, n=186 (49.5%) 4G/5G, and n=68 (18.1%) 5G/5G PAI-1 genotype carriers. Univariate and multivariate analysis showed that only the 4G/5G genotype was associated with coronary artery occlusion (OR: 1.656 and 95% CI: 1.009–2.718, p=0.046). Conclusions. Our results showed that carriers of PAI-1 4G/5G genotype with myocardial infarction have increased odds of coronary artery occlusion more than 1.6 times in comparison to the carriers of homozygous genotypes

    The Effect of Rivaroxaban on CYP4F2 and Transcription Factors’ Activity in HUVECs

    No full text
    Interindividual variabilities between patients taking the anticoagulant rivaroxaban are a result of hepatic metabolism by CYP 450 enzymes. The objective of this study was to evaluate the impact of rivaroxaban on CYP4F2 and transcription factors’ activity in HUVECs. Rivaroxaban and its metabolites were detected by UPLC-ESI-MS and UPLC-QTOF-MS. CYP4F2, HNF4α, PXR and CAR expressions were determined in HUVECs by qPCR; CYP4F2 protein concentration was determined by ELISA. Rivaroxaban metabolites (M-1, M-2, M-5, M-8, M-10, M-11 and M-18) were detected in endothelial cells’ culture medium. Increasing concentrations of rivaroxaban determined lower 13-docosenamide concentrations. Rivaroxaban and dexamethasone reduced the expression of CYP4F2 when hsa-miR-24-3p—both CYP4F2 expression and CYP4F2 protein levels in HUVECs. The expression of the transcription factors HNF4α, PXR and CAR was not detected in HUVECs

    <i>Enterobacterales</i> Biofilm-Specific Genes and Antimicrobial and Anti-Inflammatory Biomarkers in the Blood of Patients with Ischemic Heart Disease

    No full text
    Background: Ischemic heart disease (IHD) is the most prevalent type of cardiovascular disease. The main cause of IHD is atherosclerosis, which is a multifactorial inflammatory disease of blood vessels. Studies show that bacteria might have a significant impact on the pathogenesis of atherosclerosis and plaque rupture. This study aimed to evaluate the complexity of interactions between bacteria and the human body concerning metabolites and bacterial genes in patients with ischemic heart disease. Methods: Bacterial 16S rDNA and wcaF, papC, and sdhC genes were detected in whole blood using a real-time PCR methodology. An enzyme-linked immunosorbent assay was used to measure the concentration of the LL-37 protein. An analysis of ARA in blood plasma was performed. Results: Bacterial 16S rDNA was detected in 31% of the study patients, and the genes wcaF and sdhC in 20%. Enterobacterales genes were detected more frequently in patients younger than 65 years than in patients aged 65 years and older (p = 0.018) and in patients with type 2 diabetes (p = 0.048). Concentrations of the human antimicrobial peptide LL-37 and 12S-HETE concentrations were determined to be higher if patients had 16S rDNA and biofilm-specific genes. Conclusions: The results of this study enhance the understanding that Enterobacterales bacteria may participate in the pathogenesis of atherosclerosis and IHD. Bacterial DNA and host metabolites in higher concentrations appear to be detected
    corecore