28 research outputs found

    Never too much—the benefit of talent to team performance in the National Basketball Association: Comment on Swaab, Schaerer, Anicich, Ronay, and Galinsky (2014)

    Get PDF
    As long ago as the 4th century BCE, Aristotle (~350 BCE/1999) claimed that moderate amounts of qualities, rather than an abundance thereof, are needed for success. Indeed, there are a number of too-much-of-a-good-thing (TMGT) phenomena in psychology in which generally positive traits start to exert negative influence after a certain point (for reviews, see Grant & Schwartz, 2011; Pierce & Aguinis, 2013; for a general framework, see Busse, Mahlendorf, & Bode, 2016). Swaab, Schaerer, Anicich, Ronay, and Galinsky (2014) demonstrated such a phenomenon in team sports: Having more talented team members leads to better team performance up to a certain point, after which talent becomes “too much” and detrimental to performance. This too-much-talent (TMT) effect was present in basketball and soccer, professional team sports with high coordination requirements, presumably because status conflicts among highly skilled members impair coordination in teams. The TMT effect was absent in baseball, in which these requirements are lower. Here, we reexamine the TMT effect in basketball, the only domain in which the TMT effect has been shown,1 using the same data set as in the original study as well as a much larger data set. We demonstrate that Swaab et al.’s evidence of TMT is based on an inappropriate approach to testing the inverse-U-shaped relation. The results demonstrate that the common belief among laypeople (Swaab et al., 2014 Study 1) is actually correct—teams generally benefit from more talented members although the benefits decrease marginally. We did not observe any case in which increased talent was detrimental to team success

    Large data and Bayesian modeling—aging curves of NBA players

    Get PDF
    Researchers interested in changes that occur as people age are faced with a number of methodological problems, starting with the immense time scale they are trying to capture, which renders laboratory experiments useless and longitudinal studies rather rare. Fortunately, some people take part in particular activities and pastimes throughout their lives, and often these activities are systematically recorded. In this study, we use the wealth of data collected by the National Basketball Association to describe the aging curves of elite basketball players. We have developed a new approach rooted in the Bayesian tradition in order to understand the factors behind the development and deterioration of a complex motor skill. The new model uses Bayesian structural modeling to extract two latent factors, those of development and aging. The interaction of these factors provides insight into the rates of development and deterioration of skill over the course of a player’s life. We show, for example, that elite athletes have different levels of decline in the later stages of their career, which is dependent on their skill acquisition phase. The model goes beyond description of the aging function, in that it can accommodate the aging curves of subgroups (e.g., different positions played in the game), as well as other relevant factors (e.g., the number of minutes on court per game) that might play a role in skill changes. The flexibility and general nature of the new model make it a perfect candidate for use across different domains in lifespan psychology

    Maximizing the potential of digital games for understanding skill acquisition

    Get PDF
    Gaming is a domain of profound skill development. Players’ digital traces create data that track the development of skill from novice to expert levels. We argue that existing work, although promising, has yet to take advantage of the potential of game data for understanding skill acquisition, and that to realize this potential, future studies can use the fit of formal learning curves to individual data as a theoretical anchor. Learning-curve analysis allows learning rate, initial performance, and asymptotic performance to be separated out, and so can serve as a tool for reconciling the multiple factors that may affect learning. We review existing research on skill development using data from digital games, showing how such work can confirm, challenge, and extend existing claims about the psychology of expertise. Learning-curve analysis provides the foundation for direct experiments on the factors that affect skill development, which are necessary for a cross-domain cognitive theory of skill. We conclude by making recommendations for, and noting obstacles to, experimental studies of skill development in digital games

    Home advantage mediated (HAM) by referee bias and team performance during covid

    Get PDF
    The fans’ importance in sports is acknowledged by the term ‘the 12th man’, a figurative extra player for the home team. Sport teams are indeed more successful when they play in front of their fans than when they play away. The supposed mechanism behind this phenomenon, termed Home Advantage (HA), is that fans’ support spurs home players to better performance and biases referees, which in turn determines the outcome. The inference about the importance of fans’ support is, however, indirect as there is normally a 12th man of this kind, even if it is an opponent’s. The current pandemic, which forced sporting activities to take place behind closed doors, provides the necessary control condition. Here we employ a novel conceptual HA model on a sample of over 4000 soccer matches from 12 European leagues, some played in front of spectators and some in empty stadia, to demonstrate that fans are indeed responsible for the HA. However, the absence of fans reduces the HA by a third, as the home team’s performance suffers and the officials’ bias disappears. The current pandemic reveals that the figurative 12th man is no mere fan hyperbole, but is in fact the most important player in the home team

    Reading the future from body movements – anticipation in handball

    Get PDF
    In speed-based sports that require fast reactions, the most accurate predictions are made once the players have seen the ball trajectory. However, waiting for the ball trajectory does not leave enough time for appropriate reactions. Expert athletes use kinematic information which they extract from the opponent’s movements to anticipate the ball trajectory. Temporal occlusion, where only a part of the full movement sequence is presented, has often been used to research anticipation in sports. Unlike many previous studies, we chose occlusion points in video-stimuli of penalty shooting in handball based on the domain-specific analysis of movement sequences. Instead of relying on randomly chosen occlusion points, each time point in our study revealed a specific chunk of information about the direction of the ball. The multivariate analysis showed that handball goalkeepers were not only more accurate and faster than novices overall when predicting where the ball will end up, but that experts and novices also made their decisions based on different kinds of movement sequences. These findings underline the importance of kinematic knowledge for anticipation, but they also demonstrate the significance of carefully chosen occlusion points

    Identifying predictors of suicide in severe mental illness : a feasibility study of a clinical prediction rule (Oxford Mental Illness and Suicide tool or OxMIS)

    Get PDF
    Background: Oxford Mental Illness and Suicide tool (OxMIS) is a brief, scalable, freely available, structured risk assessment tool to assess suicide risk in patients with severe mental illness (schizophrenia-spectrum disorders or bipolar disorder). OxMIS requires further external validation, but a lack of large-scale cohorts with relevant variables makes this challenging. Electronic health records provide possible data sources for external validation of risk prediction tools. However, they contain large amounts of information within free-text that is not readily extractable. In this study, we examined the feasibility of identifying suicide predictors needed to validate OxMIS in routinely collected electronic health records. Methods: In study 1, we manually reviewed electronic health records of 57 patients with severe mental illness to calculate OxMIS risk scores. In study 2, we examined the feasibility of using natural language processing to scale up this process. We used anonymized free-text documents from the Clinical Record Interactive Search database to train a named entity recognition model, a machine learning technique which recognizes concepts in free-text. The model identified eight concepts relevant for suicide risk assessment: medication (antidepressant/antipsychotic treatment), violence, education, self-harm, benefits receipt, drug/alcohol use disorder, suicide, and psychiatric admission. We assessed model performance in terms of precision (similar to positive predictive value), recall (similar to sensitivity) and F1 statistic (an overall performance measure). Results: In study 1, we estimated suicide risk for all patients using the OxMIS calculator, giving a range of 12 month risk estimates from 0.1-3.4%. For 13 out of 17 predictors, there was no missing information in electronic health records. For the remaining 4 predictors missingness ranged from 7-26%; to account for these missing variables, it was possible for OxMIS to estimate suicide risk using a range of scores. In study 2, the named entity recognition model had an overall precision of 0.77, recall of 0.90 and F1 score of 0.83. The concept with the best precision and recall was medication (precision 0.84, recall 0.96) and the weakest were suicide (precision 0.37), and drug/alcohol use disorder (recall 0.61). Conclusions: It is feasible to estimate suicide risk with the OxMIS tool using predictors identified in routine clinical records. Predictors could be extracted using natural language processing. However, electronic health records differ from other data sources, particularly for family history variables, which creates methodological challenges

    Personalised treatment for cognitive impairment in dementia : development and validation of an artificial intelligence model

    Get PDF
    Background Donepezil, galantamine, rivastigmine and memantine are potentially effective interventions for cognitive impairment in dementia, but the use of these drugs has not been personalised to individual patients yet. We examined whether artificial intelligence-based recommendations can identify the best treatment using routinely collected patient-level information. Methods Six thousand eight hundred four patients aged 59–102 years with a diagnosis of dementia from two National Health Service (NHS) Foundation Trusts in the UK were used for model training/internal validation and external validation, respectively. A personalised prescription model based on the Recurrent Neural Network machine learning architecture was developed to predict the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores post-drug initiation. The drug that resulted in the smallest decline in cognitive scores between prescription and the next visit was selected as the treatment of choice. Change of cognitive scores up to 2 years after treatment initiation was compared for model evaluation. Results Overall, 1343 patients with MMSE scores were identified for internal validation and 285 [21.22%] took the drug recommended. After 2 years, the reduction of mean [standard deviation] MMSE score in this group was significantly smaller than the remaining 1058 [78.78%] patients (0.60 [0.26] vs 2.80 [0.28]; P = 0.02). In the external validation cohort (N = 1772), 222 [12.53%] patients took the drug recommended and reported a smaller MMSE reduction compared to the 1550 [87.47%] patients who did not (1.01 [0.49] vs 4.23 [0.60]; P = 0.01). A similar performance gap was seen when testing the model on patients prescribed with AChEIs only. Conclusions It was possible to identify the most effective drug for the real-world treatment of cognitive impairment in dementia at an individual patient level. Routine care patients whose prescribed medications were the best fit according to the model had better cognitive performance after 2 years

    Maximizing the use of social and behavioural information from secondary care mental health electronic health records

    Get PDF
    Purpose The contribution of social and behavioural factors in the development of mental health conditions and treatment effectiveness is widely supported, yet there are weak population level data sources on social and behavioural determinants of mental health. Enriching these data gaps will be crucial to accelerating precision medicine. Some have suggested the broader use of electronic health records (EHR) as a source of non-clinical determinants, although social and behavioural information are not systematically collected metrics in EHRs, internationally. Objective In this commentary, we highlight the nature and quality of key available structured and unstructured social and behavioural data using a case example of value counts from secondary mental health data available in the UK from the UK Clinical Record Interactive Search (CRIS) database; highlight the methodological challenges in the use of such data; and possible solutions and opportunities involving the use of natural language processing (NLP) of unstructured EHR text. Conclusions Most structured non-clinical data fields within secondary care mental health EHR data have too much missing data for adequate use. The utility of other non-clinical fields reported semi-consistently (e.g., ethnicity and marital status) is entirely dependent on treating them appropriately in analyses, quantifying the many reasons behind missingness in consideration of selection biases. Advancements in NLP offer new opportunities in the exploitation of unstructured text from secondary care EHR data particularly given that clinical notes and attachments are available in large volumes of patients and are more routinely completed by clinicians. Tackling ways to re-use, harmonize, and improve our existing and future secondary care mental health data, leveraging advanced analytics such as NLP is worth the effort in an attempt to fill the data gap on social and behavioural contributors to mental health conditions and will be necessary to fulfill all of the domains needed to inform personalized interventions

    Real-world effectiveness, its predictors and onset of action of cholinesterase inhibitors and memantine in dementia: retrospective health record study

    Get PDF
    Background The efficacy of acetylcholinesterase inhibitors and memantine in the symptomatic treatment of Alzheimer's disease is well-established. Randomised trials have shown them to be associated with a reduction in the rate of cognitive decline. Aims To investigate the real-world effectiveness of acetylcholinesterase inhibitors and memantine for dementia-causing diseases in the largest UK observational secondary care service data-set to date. Method We extracted mentions of relevant medications and cognitive testing (Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores) from de-identified patient records from two National Health Service (NHS) trusts. The 10-year changes in cognitive performance were modelled using a combination of generalised additive and linear mixed-effects modelling. Results The initial decline in MMSE and MoCA scores occurs approximately 2 years before medication is initiated. Medication prescription stabilises cognitive performance for the ensuing 2–5 months. The effect is boosted in more cognitively impaired cases at the point of medication prescription and attenuated in those taking antipsychotics. Importantly, patients who are switched between agents at least once do not experience any beneficial cognitive effect from pharmacological treatment. Conclusions This study presents one of the largest real-world examination of the efficacy of acetylcholinesterase inhibitors and memantine for symptomatic treatment of dementia. We found evidence that 68% of individuals respond to treatment with a period of cognitive stabilisation before continuing their decline at the pre-treatment rate
    corecore