5,708 research outputs found
Simple and effective method to lock buoy position to ocean currents
Window-shade drogue, used with drifting buoys to keep them moving with current at speed as close to that of current as possible, has drag coefficient of 1.93 compared to maximum of 1.52 for previous drogues. It is remarkably simple to construct, use, and store
An overview of large wind turbine tests by electric utilities
A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable
Scale model testing of drogues for free drifting buoys
Instrumented model drogue tests were conducted in a ship model towing tank. The purpose of the tests was to observe and measure deployment and drag characteristics of such shapes as parachutes, crossed vanes, and window shades which may be employed in conjunction with free drifting buoys. Both Froude and Reynolds scaling laws were applied while scaling to full scale relative velocities of from 0 to 0.2 knots. A weighted window shade drogue is recommended because of its performance, high drag coefficient, simplicity, and low cost. Detailed theoretical performance curves are presented for parachutes, crossed vanes, and window shade drogues. Theoretical estimates of depth locking accuracy and buoy-induced dynamic loads pertinent to window shade drogues are presented as a design aid. An example of a window shade drogue design is presented
Thermal conductivity of heterogeneous mixtures and lunar soils
The theoretical evaluation of the effective thermal conductivity of granular materials is discussed with emphasis upon the heat transport properties of lunar soil. The following types of models are compared: probabilistic, parallel isotherm, stochastic, lunar, and a model based on nonlinear heat flow system synthesis
Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility
A quality assurance and performance qualification laboratory was built at
McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC)
muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer
upgrade. The facility uses cosmic rays as a muon source to ionise the quenching
gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A
gas system was developed and characterised for this purpose, with a simple and
efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC).
The gas system was tested to provide the desired 45 vol% pentane concentration.
For continuous operations, a state-machine system was implemented with alerting
and remote monitoring features to run all cosmic-ray data-acquisition
associated slow-control systems, such as high/low voltage, gas system and
environmental monitoring, in a safe and continuous mode, even in the absence of
an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal
of Instrumentation (JINST), including corrected Fig. 8b
- …