128 research outputs found

    The Entropy of Lagrange-Finsler Spaces and Ricci Flows

    Full text link
    We formulate a statistical analogy of regular Lagrange mechanics and Finsler geometry derived from Grisha Perelman's functionals generalized for nonholonomic Ricci flows. There are elaborated explicit constructions when nonholonomically constrained flows of Riemann metrics result in Finsler like configurations, and inversely, and geometric mechanics is modelled on Riemann spaces with preferred nonholonomic frame structure.Comment: latex2e, 20 pages, v3, the variant accepted to Rep. Math. Phy

    Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity

    Full text link
    Geometric methods for constructing exact solutions of motion equations with first order α\alpha ^{\prime} corrections to the heterotic supergravity action implying a non-trivial Yang-Mills sector and six dimensional, 6-d, almost-K\"ahler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections. In particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-K\"ahler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in 4-d and to generalize the solutions to non-vacuum configurations in (super) gravity/ string theories.Comment: latex2e, 44 pages with table of content, v2 accepted to EJPC with minor typos modifications requested by editor and referee and up-dated reference

    Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity

    Get PDF
    We analyze local anisotropies induced by anholonomic frames and associated nonlinear connections in general relativity and extensions to affine Poincare and de Sitter gauge gravity and different types of Kaluza-Klein theories. We construct some new classes of cosmological solutions of gravitational field equations describing Friedmann-Robertson-Walker like universes with rotation (ellongated and flattened) ellipsoidal or torus symmetry.Comment: 37 page

    On General Solutions for Field Equations in Einstein and Higher Dimension Gravity

    Full text link
    We prove that the Einstein equations can be solved in a very general form for arbitrary spacetime dimensions and various types of vacuum and non-vacuum cases following a geometric method of anholonomic frame deformations for constructing exact solutions in gravity. The main idea of this method is to introduce on (pseudo) Riemannian manifolds an alternative (to the Levi-Civita connection) metric compatible linear connection which is also completely defined by the same metric structure. Such a canonically distinguished connection is with nontrivial torsion which is induced by some nonholonomy frame coefficients and generic off-diagonal terms of metrics. It is possible to define certain classes of adapted frames of reference when the Einstein equations for such an alternative connection transform into a system of partial differential equations which can be integrated in very general forms. Imposing nonholonomic constraints on generalized metrics and connections and adapted frames (selecting Levi-Civita configurations), we generate exact solutions in Einstein gravity and extra dimension generalizations.Comment: latex 2e, 11pt, 40 pages; it is a generalizaton with modified title, including proofs and additional results for higher dimensional gravity of the letter v1, on 14 pages; v4, with new abstract, modified title and up-dated references is accepted by Int. J. Theor. Phy

    Finsler Branes and Quantum Gravity Phenomenology with Lorentz Symmetry Violations

    Full text link
    A consistent theory of quantum gravity (QG) at Planck scale almost sure contains manifestations of Lorentz local symmetry violations (LV) which may be detected at observable scales. This can be effectively described and classified by models with nonlinear dispersions and related Finsler metrics and fundamental geometric objects (nonlinear and linear connections) depending on velocity/ momentum variables. We prove that the trapping brane mechanism provides an accurate description of gravitational and matter field phenomena with LV over a wide range of distance scales and recovering in a systematic way the general relativity (GR) and local Lorentz symmetries. In contrast to the models with extra spacetime dimensions, the Einstein-Finsler type gravity theories are positively with nontrivial nonlinear connection structure, nonholonomic constraints and torsion induced by generic off-diagonal coefficients of metrics, and determined by fundamental QG and/or LV effects.Comment: latex2e, 11pt, 34 pages, the version accepted to Class. Quant. Gra

    New Classes of Off-Diagonal Cosmological Solutions in Einstein Gravity

    Full text link
    In this work, we apply the anholonomic deformation method for constructing new classes of anisotropic cosmological solutions in Einstein gravity and/or generalizations with nonholonomic variables. There are analyzed four types of, in general, inhomogeneous metrics, defined with respect to anholonomic frames and their main geometric properties. Such spacetimes contain as particular cases certain conformal and/or frame transforms of the well known Friedman-Robertson-Walker, Bianchi, Kasner and Godel universes and define a great variety of cosmological models with generic off-diagonal metrics, local anisotropy and inhomogeneity. It is shown that certain nonholonomic gravitational configurations may mimic de Sitter like inflation scenaria and different anisotropic modifications without satisfying any classical false-vacuum equation of state. Finally, we speculate on perspectives when such off-diagonal solutions can be related to dark energy and dark matter problems in modern cosmology.Comment: latex2e, 11pt, 33 pages with table of content, a variant accepted to IJT

    Fedosov Quantization of Lagrange-Finsler and Hamilton-Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

    Full text link
    We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kaehler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop deformation quantization schemes for nonlinear mechanical and gravity models on Lagrange- and Hamilton-Fedosov manifolds.Comment: latex2e, 11pt, 35 pages, v3, accepted to J. Math. Phys. (2009

    Clifford-Finsler Algebroids and Nonholonomic Einstein-Dirac Structures

    Full text link
    We propose a new framework for constructing geometric and physical models on nonholonomic manifolds provided both with Clifford -- Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off-diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange and/or Riemann-Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off-diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions.Comment: The manuscript was substantially modified following recommendations of JMP referee. The former Chapter 2 and Appendix were elliminated. The Introduction and Conclusion sections were modifie

    Nonholonomic Ricci Flows: II. Evolution Equations and Dynamics

    Full text link
    This is the second paper in a series of works devoted to nonholonomic Ricci flows. By imposing non-integrable (nonholonomic) constraints on the Ricci flows of Riemannian metrics we can model mutual transforms of generalized Finsler-Lagrange and Riemann geometries. We verify some assertions made in the first partner paper and develop a formal scheme in which the geometric constructions with Ricci flow evolution are elaborated for canonical nonlinear and linear connection structures. This scheme is applied to a study of Hamilton's Ricci flows on nonholonomic manifolds and related Einstein spaces and Ricci solitons. The nonholonomic evolution equations are derived from Perelman's functionals which are redefined in such a form that can be adapted to the nonlinear connection structure. Next, the statistical analogy for nonholonomic Ricci flows is formulated and the corresponding thermodynamical expressions are found for compact configurations. Finally, we analyze two physical applications: the nonholonomic Ricci flows associated to evolution models for solitonic pp-wave solutions of Einstein equations, and compute the Perelman's entropy for regular Lagrange and analogous gravitational systems.Comment: v2 41 pages, latex2e, 11pt, the variant accepted by J. Math. Phys. with former section 2 eliminated, a new section 5 with applications in gravity and geometric mechanics, and modified introduction, conclusion and new reference

    On General Solutions of Einstein Equations

    Full text link
    We show how the Einstein equations with cosmological constant (and/or various types of matter field sources) can be integrated in a very general form following the anholonomic deformation method for constructing exact solutions in four and five dimensional gravity (S. Vacaru, IJGMMP 4 (2007) 1285). In this letter, we prove that such a geometric method can be used for constructing general non-Killing solutions. The key idea is to introduce an auxiliary linear connection which is also metric compatible and completely defined by the metric structure but contains some torsion terms induced nonholonomically by generic off-diagonal coefficients of metric. There are some classes of nonholonomic frames with respect to which the Einstein equations (for such an auxiliary connection) split into an integrable system of partial differential equations. We have to impose additional constraints on generating and integration functions in order to transform the auxiliary connection into the Levi-Civita one. This way, we extract general exact solutions (parametrized by generic off-diagonal metrics and depending on all coordinates) in Einstein gravity and five dimensional extensions.Comment: 15 pages, latex2e, submitted to arXiv.org on September 22, 2009, equivalent to arXiv: 0909.3949v1 [gr-qc]; an extended/modified variant published in IJTP 49 (2010) 884-913, equivalent to arXiv: 0909.3949v4 [gr-qc
    corecore