7 research outputs found

    A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity

    Get PDF
    BACKGROUND: Cardiotoxicity is a serious side effect to treatment with 5-fluorouracil (5-FU), but the underlying mechanisms are not fully understood. The objective of this systematic review was to evaluate the pathophysiology of 5-FU- induced cardiotoxicity. METHODS: We systematically searched PubMed for articles in English using the search terms: 5-FU OR 5-fluorouracil OR capecitabine AND cardiotoxicity. Papers evaluating the pathophysiology of this cardiotoxicity were included. RESULTS: We identified 27 articles of 26 studies concerning the pathophysiology of 5-FU-induced cardiotoxicity. The studies demonstrated 5-FU-induced: hemorrhagic infarction, interstitial fibrosis and inflammatory reaction in the myocardium; damage of the arterial endothelium followed by platelet aggregation; increased myocardial energy metabolism and depletion of high energy phosphate compounds; increased superoxide anion levels and a reduced antioxidant capacity; vasoconstriction of arteries; changes in red blood cell (RBC) structure, function and metabolism; alterations in plasma levels of substances involved in coagulation and fibrinolysis and increased endothelin-1 levels and N-terminal-pro brain natriuretic peptide levels. Based on these findings the proposed mechanisms are: endothelial injury followed by thrombosis, increased metabolism leading to energy depletion and ischemia, oxidative stress causing cellular damage, coronary artery spasm leading to myocardial ischemia and diminished ability of RBCs to transfer oxygen resulting in myocardial ischemia. CONCLUSIONS: There is no evidence for a single mechanism responsible for 5-FU-induced cardiotoxicity, and the underlying mechanisms might be multifactorial. Further research is needed to elucidate the pathogenesis of this side effect

    Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity:A retrospective study of 452 consecutive patients with metastatic breast cancer

    Get PDF
    OBJECTIVES: Case reports of capecitabine cardiotoxicity resemble those seen with intravenous 5-fluorouracil (5-FU) with chest pain as the predominant manifestation, but few studies of capecitabine cardiotoxicity are available. We aimed to determine the incidence of symptomatic cardiotoxicity from capecitabine in patients with breast cancer and to identify risk factors. METHODS: We reviewed medical records of consecutive women with breast cancer treated with capecitabine (1000 mg/m(2) two times per day) from 2002 to 2012 at one institution. RESULTS: 22 of 452 patients (4.9%) (95% CI 2.9% to 6.9%) had symptoms of cardiotoxicity (chest pain: n=13, dyspnoea: n=9, palpitations: n=2). 11 patients had changes on ECG (atrial fibrillation: n=5, ST deviations: n=3, T-wave abnormalities: n=2 and QTc prolongation: n=1). 2 patients (0.4%) sustained acute myocardial infarction. 1 patient (0.2%) developed cardiac arrest with lethal outcome. 4 of 6 patients (66%) retreated with capecitabine had recurrent symptoms at retreatment. Cardiac comorbidity (p=0.001), hypercholesterolaemia (p=0.005) and current smoking (p=0.023) were risk factors for cardiotoxicity in univariate analyses and remained significant when adjusted for age. Patients with cardiac comorbidity were 5.5 times (95% CI 2.0 to 14.8) more likely to develop cardiotoxicity. In the subgroup of patients with apparently no cardiac comorbidity, the incidence of cardiotoxicity was lower (3.7%) and hypercholesterolaemia (p=0.035) and current smoking (p=0.020) were risk factors of cardiotoxicity. CONCLUSIONS: The incidence of cardiotoxicity from capecitabine resembles that of intravenous 5-FU (≈5%). Cardiac comorbidity, hypercholesterolaemia and current smoking were associated with development of cardiotoxicity
    corecore