381 research outputs found
FOREIGN LANGUAGE STUDENTS' PERCEPTIONS ON THE SIGNIFICANCE OF SOFT SKILLS DEVELOPMENT THROUGH EXTRACURRICULAR ACTIVITIES IN VIETNAM
In this day and age, extracurricular activities play an important role in the full development of university students by enhancing their soft skills, which are basically for their occupations and social calendar. In the face of significant benefits, numerous students face obstacles in meeting the demands of the job market due to a lack of soft skills. More than 83% of students are unable to accomplish job requirements due to skills deficiency, according to statistics from the Vietnam Institute of Educational Research. This paper reports the findings from an investigation into students’ perceptions of the necessity and development of soft skills through extracurricular activities, particularly focusing on Youth Union activities by conducting a questionnaire survey of foreign language students. The findings show that foreign language students are fully aware of the essential soft skills. The findings also point out why they choose to participate in extracurricular activities to develop these skills. Article visualizations
The distribution of satellites around massive galaxies at 1<z<3 in ZFOURGE/CANDELS: dependence on star formation activity
We study the statistical distribution of satellites around star-forming and
quiescent central galaxies at 1<z<3 using imaging from the FourStar Galaxy
Evolution Survey (ZFOURGE) and the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey (CANDELS). The deep near-IR data select satellites down to
at z<3. The radial satellite distribution around centrals
is consistent with a projected NFW profile. Massive quiescent centrals,
, have 2 times the number of satellites compared
to star-forming centrals with a significance of 2.7 even after
accounting for differences in the centrals' stellar-mass distributions. We find
no statistical difference in the satellite distributions of intermediate-mass
quiescent and star-forming centrals, . Comparing
to the Guo2011 semi-analytic model, the excess number of satellites indicates
that quiescent centrals have halo masses 0.3 dex larger than star-forming
centrals, even when the stellar-mass distributions are fixed. We use a simple
toy model that relates halo mass and quenching, which roughly reproduces the
observed quenched fractions and the differences in halo mass between
star-forming and quenched galaxies only if galaxies have a quenching
probability that increases with halo mass from 0 for
11 to 1 for 13.5. A single
halo-mass quenching threshold is unable to reproduce the quiescent fraction and
satellite distribution of centrals. Therefore, while halo quenching may be an
important mechanism, it is unlikely to be the only factor driving quenching. It
remains unclear why a high fraction of centrals remain star-forming even in
relatively massive halos.Comment: 19 pages, 17 figures, accepted by ApJ. Information on ZFOURGE can be
found at http://zfourge.tamu.ed
Room-temperature ferromagnetism in graphite driven by 2D networks of point defects
Ferromagnetism in carbon-based materials is appealing for both applications
and fundamental science purposes because carbon is a light and bio-compatible
material that contains only s and p electrons in contrast to traditional
ferromagnets based on 3d or 4f electrons. Here we demonstrate direct evidence
for ferromagnetic order locally at defect structures in highly oriented
pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk
magnetization measurements at room temperature. Magnetic impurities have been
excluded as the origin of the magnetic signal after careful analysis supporting
an intrinsic magnetic behavior of carbon. The observed ferromagnetism has been
attributed to originate from unpaired electron spins localized at grain
boundaries of HOPG. Grain boundaries form two-dimensional arrays of point
defects, where their spacing depends on the mutual orientation of two grains.
Depending on the distance between these point defects, scanning tunneling
spectroscopy of grain boundaries showed two intense split localized states for
small distances between defects (< 4 nm) and one localized state at the Fermi
level for large distances between defects (> 4 nm).Comment: 19 pages, 5 figure
Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility
Issues of morphology, nucleation and growth of Ge cluster arrays deposited by
ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered.
Difference in nucleation of quantum dots during Ge deposition at low (<600 deg
C) and high (>600 deg. C) temperatures is studied by high resolution scanning
tunneling microscopy. The atomic models of growth of both species of Ge
huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at
low temperatures is explored. A problem of lowering of the array formation
temperature is discussed with the focus on CMOS compatibility of the entire
process; a special attention is paid upon approaches to reduction of treatment
temperature during the Si(001) surface pre-growth cleaning, which is at once a
key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array
formation process. The temperature of the Si clean surface preparation, the
final high-temperature step of which is, as a rule, carried out directly in the
MBE chamber just before the structure deposition, determines the compatibility
of formation process of Ge-QD-array based devices with the CMOS manufacturing
cycle. Silicon surface hydrogenation at the final stage of its wet chemical
etching during the preliminary cleaning is proposed as a possible way of
efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure
Hf-based high-k materials for Si nanocrystal floating gate memories
Pure and Si-rich HfO2 layers fabricated by radio frequency sputtering were utilized as alternative tunnel oxide layers for high-k/Si-nanocrystals-SiO2/SiO2 memory structures. The effect of Si incorporation on the properties of Hf-based tunnel layer was investigated. The Si-rich SiO2 active layers were used as charge storage layers, and their properties were studied versus deposition conditions and annealing treatment. The capacitance-voltage measurements were performed to study the charge trapping characteristics of these structures. It was shown that with specific deposition conditions and annealing treatment, a large memory window of about 6.8 V is achievable at a sweeping voltage of ± 6 V, indicating the utility of these stack structures for low-operating-voltage nonvolatile memory devices
Myogenic progenitors contribute to open but not closed fracture repair
<p>Abstract</p> <p>Background</p> <p>Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair.</p> <p>Methods</p> <p>We employed a <it>MyoD</it>-Cre<sup>+</sup>:Z/AP<sup>+ </sup>conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a <it>human alkaline phosphatase (hAP) </it>reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing.</p> <p>Results</p> <p>In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP<sup>+ </sup>cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP<sup>+ </sup>cells detected in the open fracture callus. At early stages of repair, many hAP<sup>+ </sup>cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP<sup>+ </sup>cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP<sup>+ </sup>staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors.</p> <p>Conclusions</p> <p>These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery.</p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/9/136</url></p
Innovative Crop Productions for Healthy Food: The Case of Chia (Salvia hispanica L.)
Chia (Salvia hispanica L.) is an ancient crop from Central America
which has been recently rediscovered as a source of ω-3 and nutraceuticals in
seeds. Besides traditional seed consumption, innovative uses of the plant seeds
and leaves have been proposed based on the high protein content and the production
of mucilage which lends itself to a range of applications. This chapter reviews
research on the plant’s genetics and breeding, quality, and uses. Agronomic studies
which have only recently started worldwide are also presented along with results
from case studies in Basilicata
Azimuthal anisotropy and correlations at large transverse momenta in and Au+Au collisions at = 200 GeV
Results on high transverse momentum charged particle emission with respect to
the reaction plane are presented for Au+Au collisions at =
200 GeV. Two- and four-particle correlations results are presented as well as a
comparison of azimuthal correlations in Au+Au collisions to those in at
the same energy. Elliptic anisotropy, , is found to reach its maximum at
GeV/c, then decrease slowly and remain significant up to
-- 10 GeV/c. Stronger suppression is found in the back-to-back
high- particle correlations for particles emitted out-of-plane compared to
those emitted in-plane. The centrality dependence of at intermediate
is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004
Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV
The results from the STAR Collaboration on directed flow (v_1), elliptic flow
(v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution
of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and
compared with results from other experiments and theoretical models. Results
for identified particles are presented and fit with a Blast Wave model.
Different anisotropic flow analysis methods are compared and nonflow effects
are extracted from the data. For v_2, scaling with the number of constituent
quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and
quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures
modified, but data the same. However, in Fig. 35 the hydro calculations are
corrected in this version. The data tables are available at
http://www.star.bnl.gov/central/publications/ by searching for "flow" and
then this pape
- …