34 research outputs found

    Specific downregulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression.

    No full text
    Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X chromosome (demasculization of X chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between X chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males each carrying an independent introgression fragment from C. briggsae X chromosome in an otherwise C. nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of downregulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the downregulated genes caused by the X chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find a subset of 22G RNAs specifically targeting the downregulated spermatogenesis genes are significantly upregulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction

    Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

    Get PDF

    A phase I pharmacological and biological study of PI-88 and docetaxel in patients with advanced malignancies

    No full text
    Purpose: This study evaluated the safety, toxicity, pharmacological properties and biological activity of PI-88, a heparanase endoglycosidase enzyme inhibitor, with fixed weekly docetaxel in patients with advanced solid malignancies. Experimental design: This was a phase I study to determine the maximal-tolerated dose of escalating doses of PI-88 administered subcutaneously for 4 days per week, along with docetaxel 30 mg/m given on days 1, 8, 15 of a 28-day schedule. Results: Sixteen patients received a total of 42 courses of therapy. No dose-limiting toxicities were observed despite escalation to the highest planned dose level of PI-88 (250 mg/day). Frequent minor toxicities included fatigue (38%), dysgeusia (28.5%), thrombocytopenia (12%), diarrhea (14%), nausea (12%), and emesis (10%) in the 42 courses. No significant bleeding complications were observed. One patient developed a positive anti-heparin antibody test/serotonin releasing assay with positive anti-platelet factor 4/PI-88 antibodies and grade 1 thrombocytopenia in cycle 5, and was withdrawn from the study without any sequelae. PI-88 plasma concentrations (mirrored by APTT) and urinary elimination were linear and dose-proportional. Docetaxel did not alter the pharmacokinetic (PK) profile of PI-88, nor did PI-88 affect docetaxel PK. No significant relationship was determined between plasma or urine FGF-2, or plasma VEGF levels and PI-88 dose/response. Although no objective responses were observed; 9 of the 15 evaluable patients had stable disease for greater than two cycles of therapy. Conclusion: PI-88 administered at 250 mg/day for 4 days each week for 3 weeks with docetaxel 30 mg/m on days 1, 8 and 15, every 28 days, was determined to be the recommended dose level for phase II evaluation. This combination was well tolerated without severe toxicities or PK interactions

    MDM2 is an important prognostic and predictive factor for platin-pemetrexed therapy in malignant pleural mesotheliomas and deregulation of P14/ARF (encoded by CDKN2A) seems to contribute to an MDM2-driven inactivation of P53

    No full text
    Background: Malignant pleural mesothelioma (MPM) is a highly aggressive tumour that is first-line treated with a combination of cisplatin and pemetrexed. Until now, predictive and prognostic biomarkers are lacking, making it a non-tailored therapy regimen with unknown outcome. P53 is frequently inactivated in MPM, but mutations are extremely rare. MDM2 and P14/ARF are upstream regulators of P53 that may contribute to P53 inactivation. Methods: A total of 72 MPM patients were investigated. MDM2 immunoexpression was assessed in 65 patients. MDM2 and P14/ARF mRNA expression was analysed in 48 patients of the overall collective. The expression results were correlated to overall survival (OS) and progression-free survival (PFS). Results: OS and PFS correlated highly significantly with MDM2 mRNA and protein expression, showing a dismal prognosis for patients with elevated MDM2 expression (for OS: Score (logrank) test: P <= 0.002, and for PFS: Score (logrank) test; P<0.007). MDM2 was identified as robust prognostic and predictive biomarker for MPM on the mRNA and protein level. P14/ARF mRNA expression reached no statistical significance, but Kaplan-Meier curves distinguished patients with low P14/ARF expression and hence shorter survival from patients with higher expression and prolonged survival. Conclusions: MDM2 is a prognostic and predictive marker for a platin-pemetrexed therapy of patients with MPMs. Downregulation of P14/ARF expression seems to contribute to MDM2-overexpression-mediated P53 inactivation in MPM patients
    corecore