7 research outputs found
A Selberg integral for the Lie algebra A_n
A new q-binomial theorem for Macdonald polynomials is employed to prove an
A_n analogue of the celebrated Selberg integral. This confirms the g=A_n case
of a conjecture by Mukhin and Varchenko concerning the existence of a Selberg
integral for every simple Lie algebra g.Comment: 32 page
The Impact of Non-Equipartition on Cosmological Parameter Estimation from Sunyaev-Zel'dovich Surveys
The collisionless accretion shock at the outer boundary of a galaxy cluster
should primarily heat the ions instead of electrons since they carry most of
the kinetic energy of the infalling gas. Near the accretion shock, the density
of the intracluster medium is very low and the Coulomb collisional timescale is
longer than the accretion timescale. Electrons and ions may not achieve
equipartition in these regions. Numerical simulations have shown that the
Sunyaev-Zel'dovich observables (e.g., the integrated Comptonization parameter
Y) for relaxed clusters can be biased by a few percent. The Y-mass relation can
be biased if non-equipartition effects are not properly taken into account.
Using a set of hydrodynamical simulations, we have calculated three potential
systematic biases in the Y-mass relations introduced by non-equipartition
effects during the cross-calibration or self-calibration when using the galaxy
cluster abundance technique to constraint cosmological parameters. We then use
a semi-analytic technique to estimate the non-equipartition effects on the
distribution functions of Y (Y functions) determined from the extended
Press-Schechter theory. Depending on the calibration method, we find that
non-equipartition effects can induce systematic biases on the Y functions, and
the values of the cosmological parameters Omega_8, sigma_8, and the dark energy
equation of state parameter w can be biased by a few percent. In particular,
non-equipartition effects can introduce an apparent evolution in w of a few
percent in all of the systematic cases we considered. Techniques are suggested
to take into account the non-equipartition effect empirically when using the
cluster abundance technique to study precision cosmology. We conclude that
systematic uncertainties in the Y-mass relation of even a few percent can
introduce a comparable level of biases in cosmological parameter measurements.Comment: 10 pages, 3 figures, accepted for publication in the Astrophysical
Journal, abstract abridged slightly. Typos corrected in version
Cocycle categories
Suppose that G is a sheaf of groups on a space X and that Uα ⊂ X is an open covering. Then a cocycle for the covering is traditionally defined to be a family of elements gαβ ∈ G(Uα ∩ Uβ) such that gαα = e and gαβgβγ = gαγ when all elements are restricted to the group G(Uα ∩ Uβ ∩ Uγ)