12 research outputs found

    Chronic Nicotine Modifies Skeletal Muscle Na,K-ATPase Activity through Its Interaction with the Nicotinic Acetylcholine Receptor and Phospholemman

    Get PDF
    Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21–31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (−4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser63 and Ser68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM

    Efficacy of Chemotherapy in Acute Leukemia Patients Resistant to Previous Standard Treatment According to the Series Measurement of WT1 Gene Expression

    Get PDF
    Aim. To estimate the efficacy of chemotherapy in acute leukemia patients resistant to previous standard treatment according to the series measurement of WT1 expression. Materials & Methods. The series measurement of WT1 expression formed the basis of the efficacy estimation of induction chemotherapy in 31 patients (15 men and 16 women aged from 3 months to 68 years; the median age was 28 years) with prognostically unfavourable variants of acute myeloid (AML) and lymphoblastic leukemia (ALL) (23 AML and 8 ALL patients). The WT1 gene expression was measured at baseline and 2–3 weeks after the treatment by the quantitative real-time PCR. The threshold level for detection was 250 copies of WT1/104 copies of ABL. The cytogenetic profile of leukemia cells was assessed by standard cytogenetics and FISH. Results. The baseline expression level of WT1 varied from 305 to 58,569 copies/104 copies of ABL. The expected reduction of WT1 expression after the first induction chemotherapy treatment was reported in 22/23 (96 %) AML patients and in 6/8 (75 %) ALL patients. According to our results WT1 expression reached the threshold in 13/31 (42 %) patients, including 9 AML patients and 4 ALL patients. After 11/31 (35 %) patients received the second course of treatment, WT1 expression level became normal in 8 cases (5 ALL and 3 AML patients). Despite high dose chemotherapy, HSCT and such agents as blinatumomab and gemtuzumab, an unfavourable outcome was observed in 18/31 (58 %) patients including 6 patients with complex karyotype (CK+) and 2 patients with monosomal karyotype (MK+). Once the MK+ and CK+ combination was observed, in another case the MK+ was combined with the prognostically unfavourable inv(3)(q21q26) inversion. Conclusion. Our results show that the molecular monitoring should be included as part of treatment of the prognostically unfavourable acute leukemia. The WT1 gene was shown to be the most appropriate marker. WT1 expression was shown to correlate with the common fusion genes allowing to estimate the blast cell count at the molecular level
    corecore