8 research outputs found

    Controlling attosecond electron dynamicsby phase-stabilized polarization gating

    No full text
    Attosecond electron wavepackets are produced when an intense laser field ionizes an atom or a molecule1. When the laser field drives the wavepackets back to the parent ion, they interfere with the bound wavefunction, producing coherent subfemtosecond extreme-ultraviolet light bursts. When only a single return is possible2,3, an isolated attosecond pulse is generated. Here we demonstrate that by modulating the polarization of a carrier-envelope phase-stabilized short laser pulse4, we can finely control the electron-wavepacket dynamics. We use high-order harmonic generation to probe these dynamics. Under optimized conditions, we observe the signature of a single return of the electron wavepacket over a large range of energies. This temporally confines the extreme-ultraviolet emission to an isolated attosecond pulse with a broad and tunable bandwidth. Our approach is very general, and extends the bandwidth of attosecond isolated pulses in such a way that pulses of a few attoseconds seem achievable. Similar temporal resolution could also be achieved by directly using the broadband electron wavepacket. This opens up a new regime for time- resolved tomography of atomic or molecular wavefunctions5,6 and ultrafast dynamics

    Nonlinear Optics

    No full text
    This chapter provides a brief introduction into the basic nonlinear-optical phenomena and discusses some of the most significant recent advances and breakthroughs in nonlinear optics, as well as novel applications of nonlinear-optical processes and devices. Nonlinear optics is the area of optics that studies the interaction of light with matter in the regime where the response of the material system to the applied electromagnetic field is nonlinear in the amplitude of this field. At low light intensities, typical of non-laser sources, the properties of materials remain independent of the intensity of illumination. The superposition principle holds true in this regime, and light waves can pass through materials or be reflected from boundaries and interfaces without interacting with each other. Laser sources, on the other hand, can provide sufficiently high light intensities to modify the optical properties of materials. Light waves can then interact with each other, exchanging momentum and energy, and the superposition principle is no longer valid. This interaction of light waves can result in the generation of optical fields at new frequencies, including optical harmonics of incident radiation or sum- or difference-frequency signals

    Nonlinear Optics

    No full text
    corecore