7 research outputs found

    Serotonin Augments Gut Pacemaker Activity via 5-HT3 Receptors

    Get PDF
    Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca2+ and electric activities in ICC were performed by employing fluorescent Ca2+ imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca2+ antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca2+ oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT3 receptor antagonist suppressed spontaneous Ca2+ activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT3 receptor agonist, restored it. GR113808, a selective antagonist for 5-HT4, and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT3 receptors, had little effect on ICC Ca2+ activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT3 receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT3 receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome

    Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets

    No full text

    Serotonin Modulation of Macrophage Polarization: Inflammation and Beyond

    No full text
    corecore