24 research outputs found

    Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph

    Get PDF
    Three types of ceramic scaffolds with different composition and structure [namely synthetic 100% hydroxyapatite (HA; Engipore), synthetic calcium phosphate multiphase biomaterial containing 67% silicon stabilized tricalcium phosphate (Si-TCP; Skelite™) and natural bone mineral derived scaffolds (Bio-oss®)] were seeded with mesenchymal stem cells (MSC) and ectopically implanted for 8 and 16 weeks in immunodeficient mice. X-ray synchrotron radiation microtomography was used to derive 3D structural information on the same scaffolds both before and after implantation. Meaningful images and morphometric parameters such as scaffold and bone volume fraction, mean thickness and thickness distribution of the different phases as a function of the implantation time, were obtained. The used imaging algorithms allowed a direct comparison and registration of the 3D structure before and after implantation of the same sub-volume of a given scaffold. In this way it was possible to directly monitor the tissue engineered bone growth and the complete or partial degradation of the scaffold.Further, the detailed kinetics studies on Skelite™ scaffolds implanted for different length of times from 3 days to 24 weeks, revealed in the X-ray absorption histograms two separate peaks associated to HA and TCP. It was therefore possible to observe that the progressive degradation of the Skelite™ scaffolds was mainly due to the resorption of TCP. The different saturation times in the tissue engineered bone growth and in the TCP resorption confirmed that the bone growth was not limited the scaffold regions that were resorbed but continued in the inward direction with respect to the pore surface

    Development of microspheres for biomedical applications: a review

    Get PDF
    An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented

    Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph

    Get PDF
    International audience136 www.ecmjournal.org VS Komlev et al. Biodegradation of porous calcium phosphate scaffolds Abstract Three types of ceramic scaffolds with different composition and structure [namely synthetic 100% hydroxyapatite (HA; Engipore), synthetic calcium phosphate multiphase biomaterial containing 67% silicon stabilized tricalcium phosphate (Si-TCP; Skelite™) and natural bone mineral derived scaffolds (Bio-oss®)] were seeded with mesenchymal stem cells (MSC) and ectopically implanted for 8 and 16 weeks in immunodeficient mice. X-ray synchrotron radiation microtomography was used to derive 3D structural information on the same scaffolds both before and after implantation. Meaningful images and morphometric parameters such as scaffold and bone volume fraction, mean thickness and thickness distribution of the different phases as a function of the implantation time, were obtained. The used imaging algorithms allowed a direct comparison and registration of the 3D structure before and after implantation of the same sub-volume of a given scaffold. In this way it was possible to directly monitor the tissue engineered bone growth and the complete or partial degradation of the scaffold. Further, the detailed kinetics studies on Skelite™ scaffolds implanted for different length of times from 3 days to 24 weeks, revealed in the X-ray absorption histograms two separate peaks associated to HA and TCP. It was therefore possible to observe that the progressive degradation of the Skelite™ scaffolds was mainly due to the resorption of TCP. The different saturation times in the tissue engineered bone growth and in the TCP resorption confirmed that the bone growth was not limited the scaffold regions that were resorbed but continued in the inward direction with respect to the pore surface

    The Stem Cells meet the Physics Big Machines

    No full text
    Stem cell based regenerative therapies involve the administration of selected stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited because they have to offer non-destructive strategies capable to identify the location, magnitude, and duration of cellular survival and their fate both at early and late stages. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This article offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular, investigations concerning stem cell treatment of Duchenne muscular dystrophy, Infarcted Heart and bone tissue engineering in animal models are discussed

    Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study.

    No full text

    Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite™) for late healing of critical size rabbit calvarial defects

    No full text
    11siThe use of platelet rich plasma (PRP) in bone repair remains highly controversial. In this work, we evaluated the effect of lyophilized PRP on bone regeneration when associated with a silicon stabilized hydroxyapatite tricalcium phosphate scaffold in a rabbit calvarial defect (Skelite™). Critical defects were created in the calvaria of twenty-four rabbits. The periosteum was removed and the defects were either left empty or filled with allogeneic PRP gel; Skelite particles; Skelite and PRP gel. Four animals were killed after 4 weeks, 10 animals after 8 and 10 after 16 weeks. Specimens were processed for X-ray microtomography (μCT) and for resin embedded histology. μCT analysis revealed significant osteoid-like matrix and new bone deposition in PRP + Skelite group at both 8 and 16 weeks in respect to Skelite alone. Histologically, PRP + Skelite defects were highly cellular with more abundant osteoid deposition and more regular collagen fibres. Moreover, in vitro migration assays confirmed the chemotactic effect of PRP to endothelial and osteoprogenitor cells. We conclude that the addition of PRP influenced the local tissue microenvironment by providing key cryptic factors for regeneration, thereby enhancing progenitor cell recruitment, collagen and bone matrix deposition, and by creating a bridging interface between the scaffold and bone.nonenoneEl Backly, Rania M.; Zaky, Samer H.; Canciani, Barbara; Saad, Manal M.; Eweida, Ahmed M.; Brun, Francesco; Tromba, Giuliana; Komlev, Vladimir S.; Mastrogiacomo, Maddalena; Marei, Mona K.; Cancedda, RanieriEl Backly, Rania M.; Zaky, Samer H.; Canciani, Barbara; Saad, Manal M.; Eweida, Ahmed M.; Brun, Francesco; Tromba, Giuliana; Komlev, Vladimir S.; Mastrogiacomo, Maddalena; Marei, Mona K.; Cancedda, Ranier
    corecore