4 research outputs found

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    Spin gap in the two-dimensional electron system of GaAs/AlxGa1-xAs single heterojunctions in weak magnetic fields

    No full text
    We study the interaction-enhanced spin gaps in the two-dimensional electron gas confined in GaAs/AlGaAs single heterojunctions subjected to weak magnetic fields. The values are obtained from the chemical potential jumps measured by magnetocapacitance. The gap increase with parallel magnetic field indicates that the lowest-lying charged excitations are accompanied with a single spin flip at the odd-integer filling factor nu=1 and nu=3, in disagreement with the concept of skyrmions
    corecore