8 research outputs found

    Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks

    Get PDF
    Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons

    Stochastic Hierarchical Systems: Excitable Dynamics

    No full text
    We present a discrete model of stochastic excitability by a low-dimensional set of delayed integral equations governing the probability in the rest state, the excited state, and the refractory state. The process is a random walk with discrete states and nonexponential waiting time distributions, which lead to the incorporation of memory kernels in the integral equations. We extend the equations of a single unit to the system of equations for an ensemble of globally coupled oscillators, derive the mean field equations, and investigate bifurcations of steady states. Conditions of destabilization are found, which imply oscillations of the mean fields in the stochastic ensemble. The relation between the mean field equations and the paradigmatic Kuramoto model is shown

    Nonconvex optimization and its structural frontiers

    No full text

    An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications

    No full text
    corecore