7 research outputs found

    Photoactivatable drugs for nicotinic optopharmacology

    Get PDF
    Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales

    A photoactivable amino acid based on a novel functional coumarin-6-yl-alanine

    No full text
    A novel fluorescent amino acid, L-4 chloromethylcoumarin-6-yl-alanine, was obtained from tyrosine by a Pechmann reaction. The assembly of the heterocyclic ring at the tyrosine side chain could be achieved before or after incorporation of tyrosine into a dipeptide, and amino acid and dipeptide ester conjugates were obtained by coupling to a model N-protected alanine. The behaviour of one of the fluorescent conjugates towards irradiation was studied in a photochemical reactor at different wavelengths (254, 300, 350 and 419 nm). The photoreaction course in methanol/HEPES buffer solution (80:20) was followed by HPLC/UV monitoring. It was found that the novel unnatural amino acid could act as a fluorescent label, due to its fluorescence properties, and, more importantly, as a photoactivable unit, due to the short irradiation times necessary to cleave the ester bond between the model amino acid and the coumarin-6-yl-alanine.Universidade do Minho (UM)Fundação para a CiĂȘncia e a Tecnologia (FCT

    Photochemical tools to study dynamic biological processes

    No full text
    Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, “caged” fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes
    corecore