901 research outputs found

    Lagrangian evolution of DMS during the Southern Ocean gas exchange experiment: The effects of vertical mixing and biological community shift

    Get PDF
    Concentrations of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) are highly variable in time and space. What is driving the variability in DMS(P), and can those variability be explained by physical processes and changes in the biological community? During the Southern Ocean Gas Exchange Experiment (SO GasEx) in the austral fall of 2008, two 3He/SF6 labeled patches were created in the surface water. SF6 and DMS were surveyed continuously in a Lagrangian framework, while direct measurements of air-sea exchange further constrained the gas budgets. Turbulent diffusivity at the base of the mixed layer was estimated from SF6 profiles and used to calculate the vertical fluxes of DMS and nutrients. Increasing mixed layer nutrient concentrations due to mixing were associated with a shift in the phytoplankton community structure, which in turned likely affected the sulfur dynamics on timescales of days. DMS concentration as well as air-sea DMS flux appeared to be decoupled from the DMSP concentration, possibly due to grazing and bacterial DMS production. Contrary to expectations, in an environment with high winds and modest productivity, physical processes (air-sea exchange, photochemistry, vertical mixing) only accounted for a small fraction of DMS loss from the surface water. Among the DMS sinks, inferred biological consumption most likely dominated during SO GasEx

    Holographic chiral magnetic spiral

    Full text link
    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential.Comment: 24 pages, 15 figure

    The phases of deuterium at extreme densities

    Full text link
    We consider deuterium compressed to higher than atomic, but lower than nuclear densities. At such densities deuterium is a superconducting quantum liquid. Generically, two superconducting phases compete, a "ferromagnetic" and a "nematic" one. We provide a power counting argument suggesting that the dominant interactions in the deuteron liquid are perturbative (but screened) Coulomb interactions. At very high densities the ground state is determined by very small nuclear interaction effects that probably favor the ferromagnetic phase. At lower densities the symmetry of the theory is effectively enhanced to SU(3), and the quantum liquid enters a novel phase, neither ferromagnetic nor nematic. Our results can serve as a starting point for investigations of the phase dynamics of deuteron liquids, as well as exploration of the stability and dynamics of the rich variety of topological objects that may occur in phases of the deuteron quantum liquid, which range from Alice strings to spin skyrmions to Z_2 vortices.Comment: 9 pages, 6 figures; v2: fixed typo

    Factors influencing quality of life in children with atopic dermatitis and their caregivers: a cross-sectional study

    Get PDF
    Better understanding of atopic dermatitis’ effect on quality of life could enhance current management and therapeutic strategies. Studies investigating factors related to the health-related quality of life (HRQOL) of children with atopic dermatitis and their caregivers are limited. This cross-sectional study included 559 children (<16 years) with atopic dermatitis and their caregivers. Disease severity was associated with infants’ HRQOL (moderate: IRR: 1.42, 95% CI 1.20–1.67; severe: IRR: 1.72, 95% CI 1.32–2.24). Age and disease severity were associated with children’s HRQOL (age: IRR: 0.99, 95% CI 0.98–1.00; moderate: IRR: 1.08, 95% CI 1.02–1.14). Quality of life subdomains itching/scratching, emotional distress and sleep disturbance were most reported and increased with higher disease severity. Both caregivers’ mental and physical health were negatively affected by children’s HRQOL (physical: IRR: 0.99, 95% CI 0.99–1.00; mental: IRR: 0.98, 95% CI 0.97–0.99). Sociodemographic characteristics (gender, ethnicity, educational attainment of carers, number of children) did not demonstrate significance in children’s HRQOL model. In conclusion, current atopic dermatitis diagnostics and treatment have to be extended to the factors influencing both children’ as their caregivers’ quality of life and adapting management accordingly. Itching/scratching, emotional distress and sleep disturbance deserve attention. Sociodemographic characteristics in children’s HRQOL models also merit attention in further research

    Entanglement entropy of black holes

    Get PDF
    The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in Relativit

    Comparison of Eight Methods for the Extraction of Bacillus atrophaeus Spore DNA from Eleven Common Interferents and a Common Swab

    Get PDF
    Eight DNA extraction products or methods (Applied Biosystems PrepFiler Forensic DNA Extraction Kit; Bio-Rad Instagene Only, Bio-Rad Instagene & Spin Column Purification; EpiCentre MasterPure DNA & RNA Kit; FujiFilm QuickGene Mini80; Idaho Technologies 1-2-3 Q-Flow Kit; MoBio UltraClean Microbial DNA Isolation Kit; Sigma Extract-N-Amp Plant and Seed Kit) were adapted to facilitate extraction of DNA under BSL3 containment conditions. DNA was extracted from 12 common interferents or sample types, spiked with spores of Bacillus atropheaus. Resulting extracts were tested by real-time PCR. No one method was the best, in terms of DNA extraction, across all sample types. Statistical analysis indicated that the PrepFiler method was the best method from six dry powders (baking, biological washing, milk, plain flour, filler and talcum) and one solid (Underarm deodorant), the UltraClean method was the best from four liquids (aftershave, cola, nutrient broth, vinegar), and the MasterPure method was the best from the swab sample type. The best overall method, in terms of DNA extraction, across all sample types evaluated was the UltraClean method

    Cellular Communication through Light

    Get PDF
    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry

    Nanoporous Silicified Phospholipids and Application to Controlled Glycolic Acid Release

    Get PDF
    This work demonstrates the synthesis and characterization of novel nanoporous silicified phospholipid bilayers assembled inorganic powders. The materials are obtained by silicification process with silica precursor at the hydrophilic region of phospholipid bilayers. This process involves the co-assembly of a chemically active phospholipids bilayer within the ordered porosity of a silica matrix and holds promise as a novel application for controlled drug release or drug containers with a high level of specificity and throughput. The controlled release application of the synthesized materials was achieved to glycolic acid, and obtained a zero-order release pattern due to the nanoporosity

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore