11,529 research outputs found
Theatre Facts 2014: A Report on the Fiscal State of the U.S. Professional Not-For-Profit Theatre Field
"Theatre Facts" is Theatre Communications Group's (TCG) annual report on the fiscal state of the U.S. professional not-for-profit theatre field. The report examines attendance, performance, and fiscal health using data from TCG Fiscal Survey 2014, for the fiscal year that member theatres completed anytime between October 31, 2013, and September 30, 2014. Theatres' artistry, the contributions they make to their communities, and their influence on the artistic legacy of the nation transcend the quantitative analyses that are described here. This report is organized into 3 sections that offer different perspectives:The "Universe" section provides a broad overview of the U.S. not-for-profit professional theatre field in 2014.The "Trend Theatres" section presents a longitudinal analysis of the 118 TCG Member Theatres that responded to the TCG Fiscal Survey each year since 2010. This section provides interesting insights regarding longer-term trends experienced by a smaller sample of mostly larger theatres.The "Profiled Theatres" section provides an in-depth examination of all 177 Member Theatres that completed TCG Fiscal Survey 2014
Incremental and Transitive Discrete Rotations
A discrete rotation algorithm can be apprehended as a parametric application
from \ZZ[i] to \ZZ[i], whose resulting permutation ``looks
like'' the map induced by an Euclidean rotation. For this kind of algorithm, to
be incremental means to compute successively all the intermediate rotate d
copies of an image for angles in-between 0 and a destination angle. The di
scretized rotation consists in the composition of an Euclidean rotation with a
discretization; the aim of this article is to describe an algorithm whic h
computes incrementally a discretized rotation. The suggested method uses o nly
integer arithmetic and does not compute any sine nor any cosine. More pr
ecisely, its design relies on the analysis of the discretized rotation as a
step function: the precise description of the discontinuities turns to be th e
key ingredient that will make the resulting procedure optimally fast and e
xact. A complete description of the incremental rotation process is provided,
also this result may be useful in the specification of a consistent set of
defin itions for discrete geometry
A Dynamically Diluted Alignment Model Reveals the Impact of Cell Turnover on the Plasticity of Tissue Polarity Patterns
The polarisation of cells and tissues is fundamental for tissue morphogenesis
during biological development and regeneration. A deeper understanding of
biological polarity pattern formation can be gained from the consideration of
pattern reorganisation in response to an opposing instructive cue, which we
here consider by example of experimentally inducible body axis inversions in
planarian flatworms. Our dynamically diluted alignment model represents three
processes: entrainment of cell polarity by a global signal, local cell-cell
coupling aligning polarity among neighbours and cell turnover inserting
initially unpolarised cells. We show that a persistent global orienting signal
determines the final mean polarity orientation in this stochastic model.
Combining numerical and analytical approaches, we find that neighbour coupling
retards polarity pattern reorganisation, whereas cell turnover accelerates it.
We derive a formula for an effective neighbour coupling strength integrating
both effects and find that the time of polarity reorganisation depends linearly
on this effective parameter and no abrupt transitions are observed. This allows
to determine neighbour coupling strengths from experimental observations. Our
model is related to a dynamic -Potts model with annealed site-dilution and
makes testable predictions regarding the polarisation of dynamic systems, such
as the planarian epithelium.Comment: Preprint as prior to first submission to Journal of the Royal Society
Interface. 25 pages, 6 figures, plus supplement (18 pages, contains 1 table
and 7 figures). A supplementary movie is available from
https://dx.doi.org/10.6084/m9.figshare.c388781
Shuttle active thermal control system development testing. Volume 2: Modular radiator system tests
Tests were designed to investigate the validity of the "modular" approach to space radiator system design for space shuttle and future applications by gathering performance data on various systems comprised of different numbers of identical panels, subject to nominal and extreme heat loads and environments. Both one-sided and two-sided radiation was tested, and engineering data was gathered on simulated low a/e coatings and system response to changes in outlet temperature control point. The results of the testing showed system stability throughout nominal orbital transients, unrealistically skewed environments, freeze-thaw transients, and rapid changes in outlet temperature control point. Various alternative panel plumbing arrangements were tested with no significant changes in performance being observed. With the MRS panels arranged to represent the shuttle baseline system, a maximum heat rejection of 76,600 Btu/hr was obtained in segmented tests under the expected worst case design environments. Testing of an alternate smaller two-sided radiation configuration yielded a maximum heat rejection of 52,931 Btu/hr under the maximum design environments
Stability of Coalescence Hidden variable Fractal Interpolation Surfaces
In the present paper, the stability of Coalescence Hidden variable Fractal
Interpolation Surfaces(CHFIS) is established. The estimates on error in
approximation of the data generating function by CHFIS are found when there is
a perturbation in independent, dependent and hidden variables. It is proved
that any small perturbation in any of the variables of generalized
interpolation data results in only small perturbation of CHFIS. Our results are
likely to be useful in investigations of texture of surfaces arising from the
simulation of surfaces of rocks, sea surfaces, clouds and similar natural
objects wherein the generating function depends on more than one variable
- …