7 research outputs found

    Glycoproteomic Analysis Reveals Aberrant Expression of Complement C9 and Fibronectin in the Plasma of Patients with Colorectal Cancer

    No full text
    Colorectal cancer (CRC) is a major cause of cancer mortality. Currently used CRC biomarkers provide insufficient sensitivity and specificity; therefore, novel biomarkers are needed to improve the CRC detection. Label-free quantitative proteomics were used to identify and compare glycoproteins, enriched by wheat germ agglutinin, from plasma of CRC patients and age-matched healthy controls. Among 189 identified glycoproteins, the levels of 7 and 15 glycoproteins were significantly altered in the non-metastatic and metastatic CRC groups, respectively. Protein-protein interaction analysis revealed that they were predominantly involved in immune responses, complement pathways, wound healing and coagulation. Of these, the levels of complement C9 (C9) was increased and fibronectin (FN1) was decreased in both CRC states in comparison to those of the healthy controls. Moreover, their levels detected by immunoblotting were validated in another independent cohort and the results were consistent with in the study cohort. Combination of CEA, a commercial CRC biomarker, with C9 and FN1 showed better diagnostic performance. Interestingly, predominant glycoforms associated with acetylneuraminic acid were obviously detected in alpha-2 macroglobulin, haptoglobin, alpha-1-acid glycoprotein 1, and complement C4-A of CRC patient groups. This glycoproteomic approach provides invaluable information of plasma proteome profiles of CRC patients and identification of CRC biomarker candidates

    Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-κB signaling

    No full text
    We have previously demonstrated that in a rat model of trauma-hemorrhage (T-H), glucosamine administration during resuscitation improved cardiac function, reduced circulating levels of inflammatory cytokines, and increased tissue levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. The mechanism(s) by which glucosamine mediated its protective effect were not determined; therefore, the goal of this study was to test the hypothesis that glucosamine treatment attenuated the activation of the nuclear factor-κB (NF-κB) signaling pathway in the heart via an increase in protein O-GlcNAc levels. Fasted male rats were subjected to T-H by bleeding to a mean arterial blood pressure of 40 mmHg for 90 min followed by resuscitation. Glucosamine treatment during resuscitation significantly attenuated the T-H-induced increase in cardiac levels of TNF-α and IL-6 mRNA, IκB-α phosphorylation, NF-κB, NF-κB DNA binding activity, ICAM-1, and MPO activity. LPS (2 μg/ml) increased the levels of IκB-α phosphorylation, TNF-α, ICAM-1, and NF-κB in primary cultured cardiomyocytes, which was significantly attenuated by glucosamine treatment and overexpression of O-GlcNAc transferase; both interventions also significantly increased O-GlcNAc levels. In contrast, the transfection of neonatal rat ventricular myocytes with OGT small-interfering RNA decreased O-GlcNAc transferase and O-GlcNAc levels and enhanced the LPS-induced increase in IκB-α phosphorylation. Glucosamine treatment of macrophage cell line RAW 264.7 also increased O-GlcNAc levels and attenuated the LPS-induced activation of NF-κB. These results demonstrate that the modulation of O-GlcNAc levels alters the response of cardiomyocytes to the activation of the NF-κB pathway, which may contribute to the glucosamine-mediated improvement in cardiac function following hemorrhagic shock
    corecore