30 research outputs found
Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator
Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM) is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India) for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG). In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2)
On the Bounds of Function Approximations
Within machine learning, the subfield of Neural Architecture Search (NAS) has
recently garnered research attention due to its ability to improve upon
human-designed models. However, the computational requirements for finding an
exact solution to this problem are often intractable, and the design of the
search space still requires manual intervention. In this paper we attempt to
establish a formalized framework from which we can better understand the
computational bounds of NAS in relation to its search space. For this, we first
reformulate the function approximation problem in terms of sequences of
functions, and we call it the Function Approximation (FA) problem; then we show
that it is computationally infeasible to devise a procedure that solves FA for
all functions to zero error, regardless of the search space. We show also that
such error will be minimal if a specific class of functions is present in the
search space. Subsequently, we show that machine learning as a mathematical
problem is a solution strategy for FA, albeit not an effective one, and further
describe a stronger version of this approach: the Approximate Architectural
Search Problem (a-ASP), which is the mathematical equivalent of NAS. We
leverage the framework from this paper and results from the literature to
describe the conditions under which a-ASP can potentially solve FA as well as
an exhaustive search, but in polynomial time.Comment: Accepted as a full paper at ICANN 2019. The final, authenticated
publication will be available at https://doi.org/10.1007/978-3-030-30487-4_3
Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase
Abstract Cystathionine-β-synthase (CBS) belongs to a large family of pyridoxal 5’-phosphate (PLP)-dependent enzymes, responsible for the sulfur metabolism. The heme-dependent protein CBS is part of regulatory pathways also involving the gasotransmitter hydrogen sulfide. Malfunction of CBS can lead to pathologic conditions like cancer, cardiovascular and neurodegenerative disorders. Truncation of residues 1–40, absent in X-ray structures of CBS, reduces but does not abolish the activity of the enzyme. Here we report the NMR resonance assignment and heme interaction studies for the N-terminal peptide stretch of CBS. We present NMR-spectral evidence that residues 1–40 constitute an intrinsically disordered region in CBS and interact with heme via a cysteine-proline based motif