15 research outputs found
Beyond a pale blue dot : how to search for possible bio-signatures on earth-like planets
The Earth viewed from outside the Solar system would be identified merely
like a pale blue dot, as coined by Carl Sagan. In order to detect possible
signatures of the presence of life on a second earth among several terrestrial
planets discovered in a habit-able zone, one has to develop and establish a
methodology to characterize the planet as something beyond a mere pale blue
dot. We pay particular attention to the periodic change of the color of the dot
according to the rotation of the planet. Because of the large-scale
inhomogeneous distribution of the planetary surface, the reflected light of the
dot comprises different color components corresponding to land, ocean, ice, and
cloud that cover the surface of the planet. If we decompose the color of the
dot into several principle components, in turn, one can identify the presence
of the different surface components. Furthermore, the vegetation on the earth
is known to share a remarkable reflection signature; the reflection becomes
significantly enhanced at wave-lengths longer than 760nm, which is known as a
red-edge of the vegetation. If one can identify the corresponding color
signature in a pale blue dot, it can be used as a unique probe of the presence
of life. I will describe the feasibility of the methodology for future space
missions, and consider the direction towards astrobiology from an
astrophysicist's point of view.Comment: 11 pages, 5 figures, published in Yamagishi A., Kakegawa T., Usui T.
(eds) Astrobiology. Springer, Singapore (2019
Rotation Curves of Spiral Galaxies
Rotation curves of spiral galaxies are the major tool for determining the
distribution of mass in spiral galaxies. They provide fundamental information
for understanding the dynamics, evolution and formation of spiral galaxies. We
describe various methods to derive rotation curves, and review the results
obtained. We discuss the basic characteristics of observed rotation curves in
relation to various galaxy properties, such as Hubble type, structure,
activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137,
200
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
The transmission spectrum of Earth through lunar eclipse observations
Of the 342 planets discovered so far orbiting other stars, 58 "transit" the
stellar disk, meaning that they can be detected by a periodic decrease in the
starlight flux. The light from the star passes through the atmosphere of the
planet, and in a few cases the basic atmospheric composition of the planet can
be estimated. As we get closer to finding analogues of Earth, an important
consideration toward the characterization of exoplanetary atmospheres is what
the transmission spectrum of our planet looks like. Here we report the optical
and near-infrared transmission spectrum of the Earth, obtained during a lunar
eclipse. Some biologically relevant atmospheric features that are weak in the
reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and
methane) are much stronger in the transmission spectrum, and indeed stronger
than predicted by modelling. We also find the fingerprints of the Earth's
ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2),
which are missing in the reflected spectrum.Comment: Published in Nature, 11 July 2009. This file also contains the
on-line materia
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201