25 research outputs found

    Large Volume ZnWO4 Crystal Scintillators With Excellent Energy Resolution and Low Background

    No full text
    Large volume zinc tungstate crystal scintillators with improved scintillation characteristics were produced. Energy resolution and relative light output of samples with various sizes and shapes (cylinders, rectangular, and hexagonal prisms) were investigated. The energy resolutions of ZnWO 4 scintillator modules for the 662 keVγ line of 137Cs were 8.5% for a 1 cm3 sample and 10.7% for the large hexagonal module of dimensions ◇ 40 × 40 mm. A variation of the light output by 7%, depending on direction of observation was found for the 1 cm3 cubic crystal. Afterglow,measured 20 ms after termination of irradiation, was 0.002%. The relative light output of the scintillator and the decay kinetics were studied over the temperature range 7-300 K. The level of radioactive contamination of the ZnWO4 scintillator was determined in the Solotvina Underground Laboratory at a sensitivity of ≈0.1-10 mBq/kg. © 2006 IEEE

    MgWO4-A new crystal scintillator

    No full text
    Magnesium tungstate (MgWO4) crystals of ~1 cm3 volume were obtained for the first time using a flux growth technique. The crystal was subjected to comprehensive characterisation that included room-temperature measurements of the transmittance, X-ray luminescence spectra, afterglow under X-ray excitation, relative photoelectron output, energy resolution, non-proportionality of scintillation response to γ-quanta, response to α-particles, and pulse shape for γ-quanta and α-particles. The light output and decay kinetics of MgWO4 were studied over the temperature range 7-305 K. Under X-ray excitation the crystal exhibits an intense luminescence band peaking at a wavelength of 470 nm; the intensity of afterglow after 20 ms is 0.035%. An energy resolution of 9.1% for 662 keV γ-quanta of 137Cs was measured with a small (≈0.9 g) sample of the MgWO4 crystal. The photoelectron output of the MgWO4 crystal scintillator is 35% that of CdWO4 and 27% that of NaI(Tl). The detector showed pulse-shape discrimination ability in measurements with α-particles and γ-quanta, which enabled us to assess the radioactive contamination of the scintillator. The results of these studies demonstrate the prospect of this material for a variety of scintillation applications, including rare event searches. © 2008 Elsevier B.V

    Tungstate and Molybdate Scintillators to Search for Dark Matter and Double Beta Decay

    No full text
    Results are presented on our latest research, aimed at the development and study of oxide scintillation crystals (ZnWO4, ZnMoO4, PbWO4, PbMoO4, and MgWO4) with high scintillation yield and low intrinsic radioactivity. We report on the improvement of these properties for conventional scintillators, as well as on new promising crystals based on metal tungstates and molybdates. The results are discussed in view of applying these materials in cryogenic experiments searching for dark matter and/or neutrinoless double beta decay. © 2006 IEEE

    Oxide scintillators to search for dark matter and double beta decay

    No full text
    Results are presented of our latest research, aimed at the development and study of oxide scintillation crystals with high scintillation yield and low intrinsic radioactivity. We report on the improvement of these properties for conventional scintillators, as well as on new promising crystals based on metal tungstates and molybdates. The results are discussed in view of applying these materials in cryogenic experiments searching for dark matter or neutrinoless double beta decay. ©2008 IEEE

    X-ray Reflectivity Studies of the Surface Structure of Liquid Metals

    No full text
    Extensive theoretical predictions of atomic layering at the surfaces of liquid metals have remained unconfirmed due to the limited range of wave vector transfer qz that has been previously measured. We report here on X-ray reflectivity studies from the surfaces of liquid mercury to qz greater-than or equivalent to 2.8 Å−1, and gallium to qz greater-than or equivalent to 3.0 Å−1, that show peaks which clearly demonstrate atomic layering with spacing on the order of the atomic diameter. The exponential decay of layer penetration into the bulk for Ga (6.5 Å) is larger than for Hg (3–3.5 Å). The prominent features of the layering remain unchanged under self-assembled monolayers of thiols. The Ga layering shows an unexpected strong temperature dependence. Differences between the reflectivity from Ga and Hg at small qz indicate fundamental differences in the surface structure for these two liquid metals.Engineering and Applied Science
    corecore