20 research outputs found

    Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral–craniofacial morphogenesis and cognitive function

    Get PDF
    Over early fetal life the anterior brain, neuroepithelium, neural crest and facial ectoderm constitute a unitary, three-dimensional (3D) developmental process. This intimate embryological relationship between the face and brain means that facial dysmorphogenesis can serve as an accessible and informative index of brain dysmorphogenesis in neurological and psychiatric disorders of early developmental origin. There are three principal challenges in seeking to increase understanding of disorders of early brain dysmorphogenesis through craniofacial dysmorphogenesis: (i) the first, technical, challenge has been to digitize the facial surface in its inherent three-dimensionality; (ii) the second, analytical, challenge has been to develop methodologies for extracting biologically meaningful shape covariance from digitized samples, making statistical comparisons between groups and visualizing in 3D the resultant statistical models on a ‘whole face’ basis; (iii) the third, biological, challenge is to demonstrate a relationship between facial morphogenesis and brain morphogenesis not only in anatomical–embryological terms but also at the level of brain function. Here we consider each of these challenges in turn and then illustrate the issues by way of our own findings. These use human sexual dimorphism as an exemplar for 3D laser surface scanning of facial shape, analysis using geometric morphometrics and exploration of cognitive correlates of variation in shape of the ‘whole face’, in the context of studies relating to the early developmental origins of schizophrenia

    Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate

    No full text
    A/WySnJ mice are an inbred strain that develops cleft lip with or without cleft palate (CL/P) with a frequency of 25–30% and a predominantly unilateral expression pattern. As in humans, the pattern of incomplete penetrance, and variable and frequent unilateral expression suggests a role for altered regulation of variability (developmental stability, canalization and developmental integration) during growth. We compared both mean and variability parameters for craniofacial shape and size among A/WySnJ mice, a strain that does not develop CL/P (C57BL/6J) and their F1 cross. We show that adult A/WySnJ mice that do not express cleft lip exhibit decreased morphological integration of the cranium and that the co-ordination of overall shape and size variation is disrupted compared with both C57BL/6J mice and the F1 cross. The decrease in integration is most pronounced in the palate and face. The absence of this pattern in the F1 cross suggests that it is determined by recessive genetic factors. By contrast, the shape differences between the strains, which are thought to predispose A/WySnJ mice to CL/P, show a range of dominance which suggests a polygenic basis. We suggest that decreased integration of craniofacial growth may be an aetiological factor for CL/P in A/WySnJ mice
    corecore