6 research outputs found

    Exciton-photon interactions in semiconductor nanocrystals: Radiative rransitions, non-radiative processes and environment effects

    Get PDF
    In this review, we discuss several fundamental processes taking place in semiconductor nanocrystals (quantum dots (QDs)) when their electron subsystem interacts with electromagnetic (EM) radiation. The physical phenomena of light emission and EM energy transfer from a QD exciton to other electronic systems such as neighbouring nanocrystals and polarisable 3D (semi-infinite dielectric or metal) and 2D (graphene) materials are considered. In particular, emission decay and FRET rates near a plane interface between two dielectrics or a dielectric and a metal are discussed and their dependence upon relevant parameters is demonstrated. The cases of direct (II–VI) and indirect (silicon) band gap semiconductors are compared. We cover the relevant non-radiative mechanisms such as the Auger process, electron capture on dangling bonds and interaction with phonons. Some further effects, such as multiple exciton generation, are also discussed. The emphasis is on explaining the underlying physics and illustrating it with calculated and experimental results in a comprehensive, tutorial manner.Funding from the Ministry of Science and Higher Education of the Russian Federation (State Assignment No 0729-2020-0058), the European Commission within the project "GrapheneDriven Revolutions in ICT and Beyond" (Ref. No. 696656), from the Portuguese Foundation for Science and Technology (FCT) in the framework of the PTDC/NAN-OPT/29265/2017 "Towards high speed optical devices by exploiting the unique electronic properties of engineered 2D materials" project and the Strategic Funding UID/FIS/04650/2019 is gratefully acknowledged

    Fine Splitting of Electron States in Silicon Nanocrystal with a Hydrogen-like Shallow Donor

    Get PDF
    Electron structure of a silicon quantum dot doped with a shallow hydrogen-like donor has been calculated for the electron states above the optical gap. Within the framework of the envelope-function approach we have calculated the fine splitting of the ground sixfold degenerate electron state as a function of the donor position inside the quantum dot. Also, dependence of the wave functions and energies on the dot size was obtained
    corecore