8 research outputs found

    Coherent deglacial changes in western Atlantic Ocean circulation

    Get PDF
    Abrupt climate changes in the past have been attributed to variations in Atlantic Meridional Overturning Circulation (AMOC) strength. However, the exact timing and magnitude of past AMOC shifts remain elusive, which continues to limit our understanding of the driving mechanisms of such climate variability. Here we show a consistent signal of the 231Pa/230Th proxy that reveals a spatially coherent picture of western Atlantic circulation changes over the last deglaciation, during abrupt millennial-scale climate transitions. At the onset of deglaciation, we observe an early slowdown of circulation in the western Atlantic from around 19 to 16.5 thousand years ago (ka), consistent with the timing of accelerated Eurasian ice melting. The subsequent weakened AMOC state persists for over a millennium (~16.5–15 ka), during which time there is substantial ice rafting from the Laurentide ice sheet. This timing indicates a role for melting ice in driving a two-step AMOC slowdown, with a positive feedback sustaining continued iceberg calving and climate change during Heinrich Stadial 1

    A Conserved Virulence Plasmidic Region Contributes to the Virulence of the Multiresistant Escherichia coli Meningitis Strain S286 Belonging to Phylogenetic Group C

    Get PDF
    Recent isolation of the non-K1 Escherichia coli neonatal meningitis strain S286, belonging to phylogroup C, which is closely related to major group B1, and producing an extended-spectrum beta-lactamase, encouraged us to seek the genetic determinants responsible for its virulence. We show that S286 belongs to the sequence O type ST23(O78) and harbors 4 large plasmids. The largest one, pS286colV (∼120 kb), not related to resistance, contains genes characteristic of a Conserved Virulence Plasmidic (CVP) region initially identified in B2 extra-intestinal avian pathogenic E. coli (APEC) strains and in the B2 neonatal meningitis E. coli strain S88. The sequence of this CVP region has a strong homology (98%) with that of the recently sequenced plasmid pChi7122-1 of the O78 APEC strain Chi7122. A CVP plasmid-cured variant of S286 was less virulent than the wild type strain in a neonatal rat sepsis model with a significant lower level of bacteremia at 24 h (4.1±1.41 versus 2.60±0.16 log CFU/ml, p = 0.001) and mortality. However, the mortality in the model of adult mice was comparable between wild type and variant indicating that pS286colV is not sufficient by itself to fully explain the virulence of S286. Gene expression analysis of pS286colV in iron depleted environment was very close to that of pS88, suggesting that genes of CVP region may be expressed similarly in two very different genetic backgrounds (group C versus group B2). Screening a collection of 178 human A/B1 extraintestinal pathogenic E. coli (ExPEC) strains revealed that the CVP region is highly prevalent (23%) and MLST analysis indicated that these CVP positive strains belong to several clusters and mostly to phylogroup C. The virulence of S286 is explained in part by the presence of CVP region and this region has spread in different clusters of human A/B1 ExPEC, especially in group C

    Evolution of genes and genomes on the Drosophila phylogeny.

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Non-motor features of Parkinson disease

    No full text
    corecore