30 research outputs found

    Role of BRCA gene dysfunction in breast and ovarian cancer predisposition

    Get PDF
    Tumor suppressor genes that perform apparently generic cellular functions nonetheless cause tissue-specific syndromes in the human population when they are mutated in the germline. The two major hereditary breast/ovarian cancer predisposition genes, BRCA1 and BRCA2, appear to participate in a common pathway that is involved in the control of homologous recombination and in the maintenance of genomic integrity. How might such functions translate into the specific suppression of cancers of the breast and ovarian epithelia? Recent advances in the study of BRCA1 and BRCA2, discussed herein, have provided new opportunities to address this question

    Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?

    Get PDF
    Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems
    corecore