71 research outputs found

    Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Get PDF
    ZnO films with thickness of ~80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into Zn

    Database-driven High-Throughput Calculations and Machine Learning Models for Materials Design

    Full text link
    This paper reviews past and ongoing efforts in using high-throughput ab-inito calculations in combination with machine learning models for materials design. The primary focus is on bulk materials, i.e., materials with fixed, ordered, crystal structures, although the methods naturally extend into more complicated configurations. Efficient and robust computational methods, computational power, and reliable methods for automated database-driven high-throughput computation are combined to produce high-quality data sets. This data can be used to train machine learning models for predicting the stability of bulk materials and their properties. The underlying computational methods and the tools for automated calculations are discussed in some detail. Various machine learning models and, in particular, descriptors for general use in materials design are also covered.Comment: 19 pages, 2 figure

    Investigation of Precipitation Effects in Mg-Tb and Mg-Tb-Nd Alloys

    No full text
    Investigation of precipitation effects in solution treated Mg-Tb and Mg-Tb-Nd alloy was performed. Solution treated alloys were compared with samples deformed by high pressure torsion to examine influence of deformation on precipitation effects. Dislocations present in samples processed by high pressure torsion can serve as diffusion channels for atoms and also as nucleation sites for precipitates. Therefore precipitation of some phases in high pressure torsion deformed samples was observed at lower temperatures than in solution treated ones
    corecore