7 research outputs found

    Geographically conserved rates of background mortality among common reef-building corals in Lhaviyani Atoll, Maldives, versus northern Great Barrier Reef, Australia

    No full text
    Even in the absence of major disturbances (e.g., cyclones and bleaching), corals are consistently subject to high levels of background mortality, which under-mines individual fitness and resilience of coral colonies. Most studies of coral mortality however only focus on catastrophic mortality associated with major acute disturbance events, neglecting to consider background levels of chronic mortality that have a significant influence on population structure and turnover. If, for example, there are geo-graphic differences in the prevalence of injuries and rates of background mortality, coral communities may vary in their susceptibility to acute large-scale disturbances and environmental change. This study quantified the prevalence and severity of partial mortality for four dominant and widespread coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus,and branching Pocillopora) at Lhaviyani Atoll, Maldives, and on the northern Great Barrier Reef, Australia. The prevalence and severity of sublethal injuries varied greatly among taxa, but was generally similar between locations; on the Great Barrier Reef, 99.4 % Porites colonies, 66 % of A. hyacinthus, and 64 % of Pocillopora had conspicuous injuries, compared to 92.4 % of Porites, 47.5 % of A. hyacinthus, and 44 % of Pocillopora colonies in Lhaviyani Atoll. These results suggest that background rates of mortality and injury, and associated resilience of coral populations and communities to large-scale disturbances, are conserved at large geo-graphic scales, though adjacent colonies can have markedly different injury regimes, likely to lead to strong intraspecific variation in colony fitness and resilience

    Intraspecific variation in physiological condition of reef-building corals associated with differential levels of chronic disturbance

    Get PDF
    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B = -121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B = -7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching
    corecore