15,957 research outputs found

    The snail lemma for internal groupoids

    Get PDF
    We establish a generalized form both of the Gabriel-Zisman exact sequence associated with a pointed functor between pointed groupoids, and of the Brown exact sequence associated with a fibration of pointed groupoids. Our generalization consists in replacing pointed groupoids with groupoids internal to a pointed regular category with reflexive coequalizer

    Role of heat generation and thermal diffusion during frontal photopolymerization

    Get PDF
    Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth directio

    Mesothelioma and thymic tumors: Treatment challenges in (outside) a network setting

    Get PDF
    The management of patients with mesothelioma and thymic malignancy requires continuous multidisciplinary expertise at any step of the disease. A dramatic improvement in our knowledge has occurred in the last few years, through the development of databases, translational research programs, and clinical trials. Access to innovative strategies represents a major challenge, as there is a lack of funding for clinical research in rare cancers and their rarity precludes the design of robust clinical trials that could lead to specific approval of drugs. In this context, patient-centered initiatives, such as the establishment of dedicated networks, are warranted. International societies, such as IMIG (International Mesothelioma Interest Group) and ITMIG (International Thymic Malignancy Interest Group) provide infrastructure for global collaboration, and there are many advantages to having strong regional groups working on the same issues. There may be regional differences in risk factors, susceptibility, management and outcomes. The ability to address questions both regionally as well as globally is ideal to develop a full understanding of mesothelioma and thymic malignancies. In Europe, through the integration of national networks with EURACAN, the collaboration with academic societies and international groups, the development of networks in thoracic oncology provides multiplex integration of clinical care and research, ultimately ensuring equal access to high quality care to all patients, with the opportunity of conducting high level clinical and translational research projects

    Fisher Metric, Geometric Entanglement and Spin Networks

    Get PDF
    Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.Comment: 29 pages, 3 figures, revised version accepted for publicatio

    Galaxy evolution across the optical emission-line diagnostic diagrams?

    Full text link
    The discovery of the M-sigma relation, the local galaxy bimodality, and the link between black-hole and host-galaxy properties, have raised the question whether AGN play a role in galaxy evolution. Several theoretical models implement AGN feedback to explain the observed galaxy luminosity function, and possibly the color and morphological transformation of spiral galaxies into passive ellipticals. To understand the importance of AGN feedback, a study of the AGN populations in the radio-optical domain is crucial. A mass sequence linking star-forming galaxies and AGN has been already noted in previous works, and it is now investigated as possible evolutionary sequence. We observed a sample of 119 intermediate-redshift (0.04<z<0.4) SDSS-FIRST radio emitters with the Effelsberg 100-m telescope at 4.85 and 10.45 GHz and obtained spectral indices. We find indications of spectral index flattening in high-metallicity star-forming galaxies, composite galaxies, and Seyferts. This "flattening sequence" along the [NII]-based emission-line diagnostic diagram is consistent with the hardening of galaxy ionizing field, due to nuclear activity. After combining our data with FIRST measurements at 1.4 GHz, we find that the three-point radio spectra of Seyferts and LINERs show substantial differences, attributable to small radio core components and larger (arcsecond sized) jet/lobe components, respectively. A visual inspection of FIRST images seems to confirm this hypothesis. Galaxies along this sequence are hypothesized to be transitioning from the active star-forming galaxies (blue cloud) to the passive elliptical galaxies (red sequence). This supports the suggestion that AGN play a role in shutting down star-formation, and allow the transition from one galaxy class to the other.Comment: 20 pages, 19 figures, accepted for publication in A&

    Measuring the star formation rate with gravitational waves from binary black holes

    Full text link
    A measurement of the history of cosmic star formation is central to understand the origin and evolution of galaxies. The measurement is extremely challenging using electromagnetic radiation: significant modeling is required to convert luminosity to mass, and to properly account for dust attenuation, for example. Here we show how detections of gravitational waves from inspiraling binary black holes made by proposed third-generation detectors can be used to measure the star formation rate of massive stars with high precision up to redshifts of ~10. Depending on the time-delay model, the predicted detection rates ranges from ~1400 to ~16000 per month with the current measurement of local merger rate density. With three months of observations, parameters describing the volumetric star formation rate can be constrained at the few percent level, and the volumetric merger rate can be directly measured to 3% at z~2. Given a parameterized star formation rate, the characteristic delay time between binary formation and merger can be measured to ~60%.Comment: 7 pages, 1 table, 4 fig

    The Kirillov picture for the Wigner particle

    Get PDF
    We discuss the Kirillov method for massless Wigner particles, usually (mis)named "continuous spin" or "infinite spin" particles. These appear in Wigner's classification of the unitary representations of the Poincar\'e group, labelled by elements of the enveloping algebra of the Poincar\'e Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described.Comment: 19 pages; v2: updated to coincide with published versio
    • …
    corecore