175 research outputs found

    Altered miR-193a-5p expression in children with cow's milk allergy

    Get PDF
    Cow's milk allergy (CMA) is one of the most common food allergies in children. Epigenetic mechanisms have been suggested to play a role in CMA pathogenesis. We shown that DNA methylation of Th1/Th2 cytokine genes and FoxP3 affects CMA disease course. Preliminary evidence suggest that also the miRNome could be implicated in the pathogenesis of allergy. Main study outcome was to comparatively evaluate miRNome in children with CMA and in healthy controls

    Vacuolization of hematopoietic precursors: an enigma with multiple etiologies

    Get PDF
    Cytoplasmic vacuoles in precursors can be seen in a number of clinical settings, including copper deficiency, zinc toxicity, alcohol abuse, antibiotic treatment, myelodysplasia, and VEXAS syndrome. Gurnari et al asked how common VEXAS syndrome is in patients whose bone marrow aspirates show this distinctive feature, finding 2 diagnoses of VEXAS among 24 cases with vacuoles

    Design of experimental design as a tool for the processing and characterization of HDPE composites with sponge-gourds (Luffa-Cylindrica) agrofiber residue.

    Get PDF
    Sponge-gourd (Luffa-Cylindrica) agrofiber residue (LC)-HDPE composites were manufactured by extrusion and injection moulding. The effects of fiber content, fiber size, screw speed and barrel zones temperatures on tensile strength at yield (TS) point, modulus of elasticity (MOE), flexure stress (FS) and Izod pendulum impact resistance were evaluated by using a design of experiments (DOE)-24 Factorial with centerpoint. Furthermore, a model was also determined for each response variable as well as to generate foreknowledge for additional combinations of the experimental factors. The design analysis showed that the LC-fiber content is the most important experimental factor, since it significantly affected three out of the four mechanical properties studied, specifically MOE, FS and Izod Impact resistance. The second most important parameter is the LC-fiber size. Additionally, the design analysis showed that screw speed and temperature of barrel zones did not present any influence on the properties investigated. Finally, the models were validated by comparing the results from additional experimental runs with the predicted values obtained from the respective model

    Clinical and basic implications of dynamic T cell receptor clonotyping in hematopoietic cell transplantation

    Get PDF
    TCR repertoire diversification constitutes a foundation for successful immune reconstitution after allogeneic hematopoietic cell transplantation (allo-HCT). Deep TCR V beta sequencing of 135 serial specimens from a cohort of 35 allo-HCT recipients/donors was performed to dissect posttransplant TCR architecture and dynamics. Paired analysis of clonotypic repertoires showed a minimal overlap with donor expansions. Rarefied and hyperexpanded clonotypic patterns were hallmarks of T cell reconstitution and influenced clinical outcomes. Donor and pretransplant TCR diversity as well as divergence of class I human leukocyte antigen genotypes were major predictors of recipient TCR repertoire recovery. Complementary determining region 3-based specificity spectrum analysis indicated a predominant expansion of pathogen- and tumor-associated clonotypes in the late post-allo-HCT phase, while autoreactive clones were more expanded in the case of graft-versus-host disease occurrence. These findings shed light on post-allo-HCT adaptive immune reconstitution processes and possibly help in tracking alloreactive responses

    Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes.

    Get PDF
    The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS

    Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia

    Get PDF
    Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis

    TET2 mutations as a part of DNA dioxygenase deficiency in myelodysplastic syndromes

    Get PDF
    Decrease in DNA dioxygenase activity generated by TET2 gene family is crucial in myelodysplastic syndromes (MDS). The general downregulation of 5-hydroxymethylcytosine (5-hmC) argues for a role of DNA demethylation in MDS beyond TET2 mutations, which albeit frequent, do not convey any prognostic significance. We investigated TETs expression to identify factors which can modulate the impact of mutations and thus 5-hmC levels on clinical phenotypes and prognosis of MDS patients. DNA/RNA-sequencing and 5-hmC data were collected from 1665 patients with MDS and 91 controls. Irrespective of mutations, a significant fraction of MDS patients exhibited lower TET2 expression, whereas 5-hmC levels were not uniformly decreased. In searching for factors explaining compensatory mechanisms, we discovered that TET3 was upregulated in MDS and inversely correlated with TET2 expression in wild type cases. Although TET2 was reduced across all age groups, TET3 levels were increased in a likely feedback mechanism induced by TET2 dysfunction. This inverse relationship of TET2 and TET3 expression also corresponded to the expression of L-2-hydroxyglutarate dehydrogenase, involved in agonist/antagonist substrate metabolism. Importantly, elevated TET3 levels influ-enced the clinical phenotype of TET2 deficiency whereby the lack of compensation by TET3 (low TET3 expression) was associated with poor outcomes of TET2 mutant carriers
    • …
    corecore