765 research outputs found
First all-sky search for continuous gravitational waves from unknown sources in binary systems
Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).We present the first results of an all-sky search for continuous gravitational waves from unknown
spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis
program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and
the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a
range of orbital periods from 2 to ∼2; 254 h and a frequency- and period-dependent range of frequency
modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the
orbit from ∼0.6 × 10−3 ls to ∼6; 500 ls assuming the orbit of the binary is circular. While no plausible
candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most
sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 × 10−24 at 217 Hz,
assuming the source waves are circularly polarized. Although this search has been optimized for circular
binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition,
upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius
X-1 between 20 Hz and 57.25 Hz.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.062010publishedVersionFil: Maglione, C. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, C. Argentinian Gravitational Wave Group; Argentina.Fil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Física de Partículas y Campo
Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run
Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).Journal reference: Phys. Rev. D 89, 122003 (2014)This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009 - October 2010) and was sensitive to IMBHBs with a range up to ∼200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005 - October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc−3 Myr−1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ∼20%.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.122003submittedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, G. Argentinian Gravitational Wave Group; Argentina.Física de Partículas y Campo
The Jabal Akhdar Dome in the Oman Mountains : evolution of a dynamic fracture system
Acknowledgments: This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdo¨l- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. The German University of Technology in Oman (GU-Tech) is acknowledged for its logistic support. We gratefully acknowledge the reviewers Andrea Billi and Jean-Paul Breton, whose constructive reviews greatly improved the manuscriptPeer reviewedPreprin
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s−46°49′25.151′′. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to −5×10−9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10−25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10−24 for all polarizations and sky locations
Seismic topographic scattering in the context of GW detector site selection
In this paper, we present a calculation of seismic scattering from irregular
surface topography in the Born approximation. Based on US-wide topographic
data, we investigate topographic scattering at specific sites to demonstrate
its impact on Newtonian-noise estimation and subtraction for future
gravitational-wave detectors. We find that topographic scattering at a
comparatively flat site in Oregon would not pose any problems, whereas
scattering at a second site in Montana leads to significant broadening of wave
amplitudes in wavenumber space that would make Newtonian-noise subtraction very
challenging. Therefore, it is shown that topographic scattering should be
included as criterion in the site-selection process of future low-frequency
gravitational-wave detectors.Comment: 16 pages, 7 figure
Searches for continuous gravitational waves from nine young supernova remnants
We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3–25.3 days using the matched-filtering -statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10?25 on intrinsic strain, 2 × 10?7 on fiducial ellipticity, and 4 × 10?5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes
Avoiding selection bias in gravitational wave astronomy
When searching for gravitational waves in the data from ground-based
gravitational wave detectors it is common to use a detection threshold to
reduce the number of background events which are unlikely to be the signals of
interest. However, imposing such a threshold will also discard some real
signals with low amplitude, which can potentially bias any inferences drawn
from the population of detected signals. We show how this selection bias is
naturally avoided by using the full information from the search, considering
both the selected data and our ignorance of the data that are thrown away, and
considering all relevant signal and noise models. This approach produces
unbiased estimates of parameters even in the presence of false alarms and
incomplete data. This can be seen as an extension of previous methods into the
high false rate regime where we are able to show that the quality of parameter
inference can be optimised by lowering thresholds and increasing the false
alarm rate.Comment: 13 pages, 2 figure
Gravitational waves from spinning eccentric binaries
This paper is to introduce a new software called CBwaves which provides a
fast and accurate computational tool to determine the gravitational waveforms
yielded by generic spinning binaries of neutron stars and/or black holes on
eccentric orbits. This is done within the post-Newtonian (PN) framework by
integrating the equations of motion and the spin precession equations while the
radiation field is determined by a simultaneous evaluation of the analytic
waveforms. In applying CBwaves various physically interesting scenarios have
been investigated. In particular, we have studied the appropriateness of the
adiabatic approximation, and justified that the energy balance relation is
indeed insensitive to the specific form of the applied radiation reaction term.
By studying eccentric binary systems it is demonstrated that circular template
banks are very ineffective in identifying binaries even if they possess tiny
residual orbital eccentricity. In addition, by investigating the validity of
the energy balance relation we show that, on contrary to the general
expectations, the post-Newtonian approximation should not be applied once the
post-Newtonian parameter gets beyond the critical value .
Finally, by studying the early phase of the gravitational waves emitted by
strongly eccentric binary systems---which could be formed e.g. in various
many-body interactions in the galactic halo---we have found that they possess
very specific characteristics which may be used to identify these type of
binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra
Reconstructed CKM Matrices
We construct quark mixing matrices within a group theoretic framework which
is easily applicable to any number of generations. Familiar cases are retrieved
and related, and it is hoped that our viewpoint may have advantages both
phenomenologically and for constructing underlying mass matrix schemes.Comment: 15 pages,LaTeX,no macro
- …