123 research outputs found

    Chimerism studies in HLA-identical nonmyeloablative hematopoietic stem cell transplantation point to the donor CD8+ T-cell count on day +14 as a predictor of acute graft-versus-host disease

    Get PDF
    AbstractChimerism analysis of hematopoietic cells has emerged as an essential tool in nonmyeloablative hematopoietic stem cell transplantation. We have investigated the development of donor chimerism in granulocytes and CD4+ and CD8+ T cells in blood and bone marrow of 24 patients with hematologic malignancies who received HLA-identical sibling peripheral blood stem cell grafts after conditioning with fludarabine and 2 Gy of total body irradiation. The T-cell chimerism of blood and bone marrow was tightly correlated. Complete donor chimerism was reached earlier in the granulocytes than in the T cells. Mixed T-cell chimerism was common at the time of onset of acute graft-versus-host disease (aGVHD), and both CD4+ and CD8+ donor T-cell chimerism increased with the occurrence of aGVHD grades II to IV (P = .0002 and P = .019, respectively). The rate of disappearance of recipient CD8+ T cells was faster in patients with aGVHD grades II to IV than in patients without clinically significant aGVHD (P = .016). This observation indicates a role of graft-versus-lymphohematopoietic tissue reactions in creating complete donor T-cell chimerism. A donor CD8+ T-cell count above the median on day +14 increased the risk of subsequent development of aGVHD grades II to IV (P = .003)

    N-Acetylcysteine Increases the Frequency of Bone Marrow Pro-B/Pre-B Cells, but Does Not Reverse Cigarette Smoking-Induced Loss of This Subset

    Get PDF
    We previously showed that mice exposed to cigarette smoke for three weeks exhibit loss of bone marrow B cells at the Pro-B-to-pre-B cell transition, but the reason for this is unclear. The antioxidant N-acetylcysteine (NAC), a glutathione precursor, has been used as a chemopreventive agent to reduce adverse effects of cigarette smoke exposure on lung function. Here we determined whether smoke exposure impairs B cell development by inducing cell cycle arrest or apoptosis, and whether NAC treatment prevents smoking-induced loss of developing B cells.Groups of normal mice were either exposed to filtered room air or cigarette smoke with or without concomitant NAC treatment for 5 days/week for three weeks. Bone marrow B cell developmental subsets were enumerated, and sorted pro-B (B220(+)CD43(+)) and pre-B (B220(+)CD43(-)) cell fractions were analyzed for cell cycle status and the percentage of apoptotic cells. We find that, compared to sham controls, smoke-exposed mice have ∼60% fewer pro-B/pre-B cells, regardless of NAC treatment. Interestingly, NAC-treated mice show a 21-38% increase in total bone marrow cellularity and lymphocyte frequency and about a 2-fold increase in the pro-B/pre-B cell subset, compared to sham-treated controls. No significant smoking- or NAC-dependent differences were detected in frequency of apoptotic cells or the percentage cells in the G1, S, or G2 phases of the cycle.The failure of NAC treatment to prevent smoking-induced loss of bone marrow pre-B cells suggests that oxidative stress is not directly responsible for this loss. The unexpected expansion of the pro-B/pre-B cell subset in response to NAC treatment suggests oxidative stress normally contributes to cell loss at this developmental stage, and also reveals a potential side effect of therapeutic administration of NAC to prevent smoking-induced loss of lung function

    Cell proliferation is related to in vitro drug resistance in childhood acute leukaemia

    Get PDF
    0.05) with sensitivity to antimetabolites (cytarabine, mercaptopurine, thioguanine), L-asparaginase, teniposide, and vincristine. Similar results were found within subgroups of initial ALL (nonhyperdiploid and common/precursor-B-lineage ALL). In relapsed ALL and AML such correlations were not found. In conclusion, cell proliferation differs between leukaemia subgroups and increased proliferation is associated with increased in vitro sensitivity to several anticancer agents in initial ALL

    Imatinib mesylate (Gleevec) downregulates telomerase activity and inhibits proliferation in telomerase-expressing cell lines

    Get PDF
    Imatinib mesylate (IM) is a tyrosine kinase inhibitor, which inhibits phosphorylation of downstream proteins involved in BCR-ABL signal transduction. It has proved beneficial in treating patients with chronic myeloid leukaemia (CML). In addition, IM demonstrates activity against malignant cells expressing c-kit and platelet-derived growth factor receptor (PDGF-R). The activity of IM in the blastic crisis of CML and against various myeloma cell lines suggests that this drug may also target other cellular components. In the light of the important role of telomerase in malignant transformation, we evaluated the effect of IM on telomerase activity (TA) and regulation in various malignant cell lines. Imatinib mesylate caused a dose-dependent inhibition of TA (up to 90% at a concentration of 15 μM IM) in c-kit-expressing SK-N-MC (Ewing sarcoma), SK-MEL-28 (melanoma), RPMI 8226 (myeloma), MCF-7 (breast cancer) and HSC 536/N (Fanconi anaemia) cells as well as in ba/F3 (murine pro-B cells), which do not express c-kit, BCR-ABL or PDGF-R. Imatinib mesylate did not affect the activity of other DNA polymerases. Inhibition of TA was associated with 50% inhibition of proliferation. The inhibition of proliferation was associated with a decrease in the S-phase of the cell cycle and an accumulation of cells in the G2/M phase. No apoptosis was observed. Inhibition of TA was caused mainly by post-translational modifications: dephosphorylation of AKT and, to a smaller extent, by early downregulation of hTERT (the catalytic subunit of the enzyme) transcription. Other steps of telomerase regulation were not affected by IM. This study demonstrates an additional cellular target of IM, not necessarily mediated via known tyrosine kinases, that causes inhibition of TA and cell proliferation

    Low levels of cathepsin D are associated with a poor prognosis in endometrial cancer

    Get PDF
    Total cytosolic cathepsin D (Cat D) levels were estimated by an immunoradiometric assay in a series of 156 consecutive patients with surgical stages I–III primary endometrial adenocarcinoma. Simultaneously, the tissue content of both oestrogen (ER) and progesterone (PR) receptors, and p185HER-2/neu, DNA content (ploidy), and the fraction of S-phase cells (S-phase) were also estimated. Tumoral Cat D content ranged from 0 to 243 pmol mg−1 protein (median 44 pmol mg−1 protein) and was not associated with any of the established clinicopathological and biological prognostic variables, with the exception of a weak positive correlation with the tumoral p185HER-2/neu levels. Univariable analysis performed on a subset of 97 patients, followed for a minimum of 2 years or until death, showed that patient age at diagnosis, high histological grade, advanced surgical stage, vascular invasion, positive peritoneal cytology, low levels of Cat D, negative ER and PR status, aneuploidy, and high S-phase were predictive of the presence of persistent or recurrent disease. However, multivariable analysis revealed that only histological grade, surgical stage, Cat D and PR were significantly associated with the patient's outcome. From these findings, we conclude that Cat D is an independent prognostic factor in endometrial adenocarcinoma, its low levels being associated with a worse clinical outcome. © 1999 Cancer Research Campaig

    Specific Thiazolidinediones Inhibit Ovarian Cancer Cell Line Proliferation and Cause Cell Cycle Arrest in a PPARγ Independent Manner

    Get PDF
    Peroxisome Proliferator Activated Receptor gamma (PPARγ) agonists, such as the thiazolinediones (TZDs), have been studied for their potential use as cancer therapeutic agents. We investigated the effect of four TZDs--Rosiglitazone (Rosi), Ciglitazone (CGZ), Troglitazone (TGZ), and Pioglitazone (Pio)--on ovarian cancer cell proliferation, PPARγ expression and PPAR luciferase reporter activity. We explored whether TZDs act in a PPARγ dependent or independent manner by utilizing molecular approaches to inhibit or overexpress PPARγ activity.Treatment with CGZ or TGZ for 24 hours decreased proliferation in three ovarian cancer cell lines, Ovcar3, CaOv3, and Skov3, whereas Rosi and Pio had no effect. This decrease in Ovcar3 cell proliferation was due to a higher fraction of cells in the G(0)/G(1) stage of the cell cycle. CGZ and TGZ treatment increased apoptosis after 4 hours of treatment but not after 8 or 12 hours. Treatment with TGZ or CGZ increased PPARγ mRNA expression in Ovcar3 cells; however, protein levels were unchanged. Surprisingly, luciferase promoter assays revealed that none of the TZDs increased PPARγ activity. Overexpression of wild type PPARγ increased reporter activity. This was further augmented by TGZ, Rosi, and Pio indicating that these cells have the endogenous capacity to mediate PPARγ transactivation. To determine whether PPARγ mediates the TZD-induced decrease in proliferation, cells were treated with CGZ or TGZ in the absence or presence of a dominant negative (DN) or wild type overexpression PPARγ construct. Neither vector changed the TZD-mediated cell proliferation suggesting this effect of TZDs on ovarian cancer cells may be PPARγ independent.CGZ and TGZ cause a decrease in ovarian cancer cell proliferation that is PPARγ independent. This concept is supported by the finding that a DN or overexpression of the wild type PPARγ did not affect the changes in cell proliferation and cell cycle

    Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y2-receptors

    Get PDF
    Extracellular ATP is known to inhibit growth of various tumours by activating specific purinergic receptors (P2-receptors). Since the therapy of advanced oesophageal cancer is unsatisfying, new therapeutic approaches are mandatory. Here, we investigated the functional expression and potential antiproliferative effects of P2-purinergic receptors in human oesophageal cancer cells. Prolonged incubation of primary cell cultures of human oesophageal cancers as well as of the squamous oesophageal cancer cell line Kyse-140 with ATP or its stable analogue ATPγS dose-dependently inhibited cell proliferation. This was due to both an induction of apoptosis and cell cycle arrest. The expression of P2-receptors was examined by RT-PCR, immunocytochemistry, and [Ca2+]i-imaging. Application of various extracellular nucleotides dose-dependently increased [Ca2+]i. The rank order of potency was ATP=UTP>ATPγS>ADP=UDP. 2-methylthio-ATP and α,β-methylene-ATP had no effects on [Ca2+]i. Complete cross-desensitization between ATP and UTP was observed. Moreover, the phospholipase C inhibitor U73122 dose-dependently reduced the ATP triggered [Ca2+]i signal. The pharmacological features strongly suggest the functional expression of G-protein coupled P2Y2-receptors in oesophageal squamous cancer cells. P2Y2-receptors are involved in the antiproliferative actions of extracellular nucleotides. Thus, P2Y2-receptors are promising target proteins for innovative approaches in oesophageal cancer therapy

    Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse

    Get PDF
    BACKGROUND: The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. METHODS: A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. RESULTS: We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. CONCLUSIONS: We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a well standardized experimental model for research on cancer cachexia. We wish to point out that scientists using the C26 model to study cancer and those using the same model to study cachexia may be unaware of each other's works because they use different keywords; we present strategies to eliminate this gap and discuss the benefits of such an exchange of knowledge
    corecore