2 research outputs found
C5a peptidase (ScpA) activity towards human type II and type III interferons
C5a peptidase, also known as ScpA, is a surface associated serine protease derived from Streptococcus pyogenes and has been described as an important factor in streptococcus virulence, capable of cleaving complement components C5a, C3 and C3a. Although the interactions of ScpA with complement components is well studied, extensive screening of ScpA activity against other pro-inflammatory cytokines is lacking. Here, ScpA’s ability to cleave human pro-inflammatory cytokines was tested, revealing its ability to cleave human IFNγ, IFNλ1, IFNλ2, C5, IL-37 but with significantly reduced activities. The functional consequence of ScpA’s cleavage of IFNγ in its signalling through the Jak-Stat pathway has also been evaluated in an in vitro RPE1 cell model. These newly identified targets for ScpA highlight the complexity of streptococcus infections and indeed, the potential for ScpA to have a therapeutic role in the progression of inflammatory diseases involving these cytokines</p
Impact of propeptide cleavage on the stability and activity of a streptococcal immunomodulatory C5a peptidase for biopharmaceutical development
Posttranslational modifications of proteins can impact their therapeutic efficacy, stability, and potential for pharmaceutical development. The Group AStreptococcus pyogenesC5a peptidase (ScpA) is a multi-domain protein composed of an N-terminal signal peptide, a catalytic domain (including propeptide), three fibronectin domains, and cell membrane-associated domains. It is one of several proteins produced by Group AS. pyogenesknown to cleave components of the human complement system. After signal peptide removal, ScpA undergoes autoproteolysis and cleaves its propeptide for full maturation. The exact location and mechanism of the propeptide cleavage, and the impact of this cleavage on stability and activity, are not clearly understood, and the exact primary sequence of the final enzyme is not known. A form of ScpA with no autoproteolysis fragments of propeptide present may be more desirable for pharmaceutical development from a regulatory and a biocompatibility in the body perspective. The current study describes an in-depth structural and functional characterization of propeptide truncated variants of ScpA expressed inEscherichia colicells. All three purified ScpA variants, ScpA, 79ΔPro, and 92ΔPro, starting with N32, D79, and A92 positions, respectively, showed similar activity against C5a, which suggests a propeptide-independent activity profile of ScpA. CE-SDS and MALDI top-down sequencing analyses highlight a time-dependent propeptide autoproteolysis of ScpA at 37 °C with a distinct end point at A92 and/or D93. In comparison, all three variants of ScpA exhibit similar stability, melting temperatures, and secondary structure orientation. In summary, this work not only highlights propeptide localization but also provides a strategy to recombinantly produce a final mature and active form of ScpA without any propeptide-related fragments.</p