42 research outputs found

    Effects of a reduction of the number of electrodes in the EEG montage on the number of identified seizure patterns

    Get PDF
    Continuous EEG monitoring (cEEG) is frequently used in neurocritical care. The detection of seizures is one of the main objectives. The placement of the EEG electrodes is time consuming, therefore a reduced montage might lead to an increased availability in the ICU setting. It is unknown whether such a reduction of electrodes reduces the number of seizure patterns that are detected. A total of 95 seizure and 95 control EEG sequences from a pediatric epilepsy monitoring unit (EMU) were anonymized and reduced to an eight-lead montage. Two experts evaluated the recordings and the seizure detection rates using the reduced and the full montage were compared. Sensitivity and specificity for the seizure detection were calculated using the original EMU findings as gold standard. The sensitivity to detect seizures was 0.65 for the reduced montage compared to 0.76 for the full montage (p = 0.031). The specificities (0.97 and 0.96) were comparable (p = 1). A total of 4/9 (44%) of the generalized, 12/44 (27%) of the frontal, 6/14 (43%) of the central, 0/1 (0%) of the occipital, 6/20 (30%) of the temporal, and 5/7 (71%) of the parietal seizure patterns were not detected using the reduced montage. The median time difference between the onset of the seizure pattern in the full and reduced montage was 0.026s (IQR 5.651s). In this study the reduction of the EEG montage from 21 to eight electrodes reduced the sensitivity to detect seizure patterns from 0.76 to 0.65. The specificity remained virtually unchanged

    Molekulare Therapien bei neuromuskulären Erkrankungen im Kindesalter — Große Hoffnungen und unbekannte Risiken

    Get PDF
    Spinal muscular atrophy and muscular dystrophy Duchenne belong to the group of rare neuromuscular diseases manifesting in early childhood. Therapeutic options for some of these rare monogenic diseases have changed significantly in recent years. Molecular therapies such as direct gene transfer or alternative processing of the disease-specific gene play an important role in this transformation.In particular, the course of 5q-associated spinal muscle atrophy has changed significantly due to the availability of such causal therapies, while the results of ongoing studies are still pending for most muscle diseases. In the area of neuromuscular diseases, an achievable therapeutic goal is to slow the progression, but not complete healing. Currently, only limited data are available. In particular, the long-term effectiveness and the possible risks are still unknown. Therefore, these therapies should be used under strictly monitored conditions

    Childhood Stroke: Awareness, Interest, and Knowledge Among the Pediatric Community

    Get PDF
    Objective: Acute childhood stroke is an emergency requiring a high level of awareness among first-line healthcare providers. This survey serves as an indicator of the awareness of, the interest in, and knowledge of childhood stroke of German pediatricians.Methods: Thousand six hundred and ninety-seven physicians of pediatric in- and outpatient facilities in Bavaria, Germany, were invited via email to an online-survey about childhood stroke.Results: The overall participation rate was 14%. Forty-six percent of participants considered a diagnosis of childhood stroke at least once during the past year, and 47% provide care for patients who have suffered childhood stroke. The acronym FAST (Face-Arm-Speech-Time-Test) was correctly cited in 27% of the questionnaires. Most commonly quoted symptoms of childhood stroke were hemiparesis (90%), speech disorder (58%), seizure (44%), headache (40%), and impaired consciousness (33%). Migraine (63%), seizure (39%), and infections of the brain (31%) were most frequently named as stroke mimics. Main diagnostic measures indicated were magnetic resonance imaging (MRI) (96%) and computer tomography (CT) (55%). Main therapeutic strategies were thrombolysis (80%), anticoagulation (41%), neuroprotective measures, and thrombectomies (15% each). Thirty-nine percent of participants had taken part in training sessions, 61% studied literature, 37% discussed with colleagues, and 25% performed internet research on childhood stroke. Ninety-three percent of participants approve skill enhancement, favoring training sessions (80%), publications (43%), and web based offers (35%). Consent for offering a flyer on the topic to caregivers in facilities was given in 49%.Conclusion: Childhood stroke constitutes a topic of clinical importance to pediatricians. Participants demonstrate a considerable level of comprehension concerning the subject, but room for improvement remains. A multi-modal approach encompassing an elaborate training program, regular educational publications in professional journals, and web based offers could reach a broad range of health care providers. Paired with a public adult and childhood stroke awareness campaign, these efforts could contribute to optimize the care for children suffering from stroke

    International Paediatric Mitochondrial Disease Scale

    Get PDF
    Objective: There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. Methods: A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6–16 years) from five different expert centres from four different continents were evaluated in this study. Results: The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23–0.99). Conclusion: In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials

    Genetic landscape of congenital insensitivity to pain and hereditary sensory and autonomic neuropathies

    Get PDF
    Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies

    Monogenic variants in dystonia: an exome-wide sequencing study

    Get PDF
    Background Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. Methods For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. Findings We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222;excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. Interpretation In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations
    corecore