451 research outputs found
Drought reduces transmission of Turnip yellows virus , an insect-vectored circulative virus
Application of a severe water deficit to Arabidopsis thaliana plants infected with a mutant of Turnip yellows virus (TuYV, Family Luteoviridae) triggers a significant alteration of several plant phenology traits and strongly reduces the transmission efficiency of the virus by aphids. Although virus accumulation in water-stressed plants was similar to that in plants grown under well-watered conditions, virus accumulation was reduced in aphids fed on plant under water deficit. These results suggest alteration of the aphid feeding behavior on plants under
water deficit
Bog plant/lichen tissue nitrogen and sulfur concentrations as indicators of emissions from oil sands development in Alberta, Canada
Increasing gaseous emissions of nitrogen (N) and sulfur (S) associated with oil sands development in northern Alberta (Canada) has led to changing regional wet and dry N and S deposition regimes. We assessed the potential for using bog plant/lichen tissue chemistry (N and S concentrations, C:N and C:S ratios, in 10 plant/lichen species) to monitor changing atmospheric N and S deposition through sampling at five bog sites, 3-6 times per growing season from 2009 to 2016. During this 8-year period, oil sands N emissions steadily increased, while S emissions steadily decreased. We examined the following: (1) whether each species showed changes in tissue chemistry with increasing distance from the Syncrude and Suncor upgrader stacks (the two largest point sources of N and S emissions); (2) whether tissue chemistry changed over the 8 year period in ways that were consistent with increasing N and decreasing S emissions from oil sands facilities; and (3) whether tissue chemistry was correlated with growing season wet deposition of NH4+-N, NO3--N, or SO42--S. Based on these criteria, the best biomonitors of a changing N deposition regime were Evernia mesomorpha, Sphagnum fuscum, and Vaccinium oxycoccos. The best biomonitors of a changing S deposition regime were Evernia mesomorpha, Cladonia mitis, Sphagnum fuscum, Sphagnum capillifolium, Vaccinium oxycoccos, and Picea mariana. Changing N and S deposition regimes in the oil sands region appear to be influencing N and S cycling in what once were pristine ombrotrophic bogs, to the extent that these bogs may effectively monitor future spatial and temporal patterns of deposition
Fabricating a Structured Single-Atom Catalyst via High-Resolution Photopolymerization 3D Printing
This study introduces a novel solution to the design of structured catalysts, integrating single-piece 3D printing with single-atom catalysis. Structured catalysts are widely employed in industrial processes, as they provide optimal mass and heat transfer, leading to a more efficient use of catalytic materials. They are conventionally prepared using ceramic or metallic bodies, which are then washcoated and impregnated with catalytically active layers. However, this approach may lead to adhesion issues of the latter. By employing photopolymerization printing, a stable and active single-atom catalyst is directly shaped into a stand-alone, single-piece structured material. The battery of characterization methods employed in the present study confirms the uniform distribution of catalytically active species and the structural integrity of the material. Computational fluid dynamics simulations are applied to demonstrate enhanced momentum transfer and light distribution within the structured body. The materials are finally evaluated in the continuous-flow photocatalytic oxidation of benzyl alcohol to benzaldehyde, a relevant reaction to prepare biomass-derived building blocks. The innovative approach reported herein to manufacture a structured single-atom catalyst circumvents the complexities of traditional synthetic methods, offering scalability and efficiency improvements, and highlights the transformative role of 3D printing in catalysis engineering to revolutionize catalysts’ design
Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads
Bogs and fens cover 6 and 21%, respectively, of the 140,329 km2 Oil Sands Administrative Area in northern Alberta. Regional background atmospheric N deposition is low (b2 kg N ha−1 yr−1 ), but oil sands development has led to increasing N deposition (as high as 17 kg N ha−1 yr−1 ). To examine responses to N deposition, over five years, we experimentally applied N (as NH4NO3) to a poor fen near Mariana Lake, Alberta, unaffected by oil sands activities, at rates of 0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1 , plus controls (no water or N addition). At Mariana Lake Poor Fen (MLPF), increasing N addition: 1) progressively inhibited N2-fixation; 2) had no effect on net primary production (NPP) of Sphagnum fuscum or S. angustifolium, while stimulating S. magellanicum NPP; 3) led to decreased abundance of S. fuscum and increased abundance of S. angustifolium, S. magellanicum, Andromeda polifolia, Vaccinium oxycoccos, and of vascular plants in general; 4) led to an increase in stem N concentrations in S. angustifolium and S. magellanicum, and an increase in leaf N concentrations in Chamaedaphne calyculata, Andromeda polifolia, and Vaccinium oxycoccos; 5) stimulated root biomass and production;6) stimulated decomposition of cellulose, but not of Sphagnum or vascular plant litter; and 7) had no or minimal effects on net N mineralization in surface peat, NH4 +-N, NO3 −-N or DON concentrations in surface porewater, or peat microbial composition. Increasing N addition led to a switch from new N inputs being taken up primarily by Sphagnum to being taken up primarily by shrubs. MLPF responses to increasing N addition did not exhibit threshold triggers, but rather began as soon as N additions increased. Considering all responses to N addition, we recommend a critical load for poor fens in Alberta of 3 kg N ha−1 yr−1
Prodrug converting enzyme gene delivery by L. monocytogenes
<p>Abstract</p> <p>Background</p> <p><it>Listeria monocytogenes </it>is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that <it>L. monocytogenes </it>is able to colonize and replicate within solid tumors after local or even systemic injection.</p> <p>Methods</p> <p>Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by <it>L. monocytogenes</it>. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria.</p> <p>Results</p> <p>The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although <it>L. monocytogenes</it>-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively P<sub>CMV</sub>-promoter with the melanoma specific P<sub>4xTETP</sub>-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies.</p> <p>Conclusion</p> <p>These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.</p
The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process
Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl-CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2-like family: CER2, CER26 and CER26-like . Expression pattern analysis showed that the three genes are differentially expressed in an organ- and tissue-specific manner. Using individual TDNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl-CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity
- …