1,138 research outputs found

    Robustness of the O(NN) universality class

    Full text link
    We calculate the critical exponents for Lorentz-violating O(NN) λϕ4\lambda\phi^{4} scalar field theories by using two independent methods. In the first situation we renormalize a massless theory by utilizing normalization conditions. An identical task is fulfilled in the second case in a massive version of the same theory, previously renormalized in the BPHZ method in four dimensions. We show that although the renormalization constants, the β\beta and anomalous dimensions acquire Lorentz-violating quantum corrections, the outcome for the critical exponents in both methods are identical and furthermore they are equal to their Lorentz-invariant counterparts. Finally we generalize the last two results for all loop levels and we provide symmetry arguments for justifying the latter

    Low-level laser therapy for treatment of neurosensory disorders after orthognathic surgery : a systematic review of randomized clinical trials

    Get PDF
    Low-level laser has been widely used in Dentistry and many studies have focused on its application in oral surgeries. This study was conducted with the aim of searching for scientific evidence concerning the effectiveness of laser to reduce pain or paresthesia related to orthognathic surgery. An electronic search was performed in PubMed, Scopus, Science Direct, LILACS, SciELO, CENTRAL, Google Scholar, OpenGrey, and ClinicalTrials.gov, up to November 2016, with no restrictions on language or year of publication. Additionally, a hand search of the reference list of the selected studies was carried out. The PICOS strategy was used to define the eligibility criteria and only randomized clinical trials were selected. Out of 1,257 identified citations, three papers fulfilled the criteria and were included in the systematic review. The risk of bias was assessed according to the Cochrane Guidelines for Clinical Trials and results were exposed based on a descriptive analysis. One study showed that laser therapy was effective to reduce postoperative pain 24 hours (P=0.007) and 72 hours (P=0.007) after surgery. Other study revealed the positive effect of laser to improve neurosensory recovery 60 days after surgery, evaluated also by the two-point discrimination (P=0.005) and sensory (P=0.008) tests. The third study reported an improvement for general sensibility of 68.75% for laser group, compared with 21.43% for placebo (P=0.0095), six months after surgery. Individual studies suggested a positive effect of low-level laser therapy on reduction of postoperative pain and acceleration of improvement of paresthesia related to orthognathic surgery. However, due to the insufficient number and heterogeneity of studies, a meta-analysis evaluating the outcomes of interest was not performed, and a pragmatic recommendation about the use of laser therapy is not possible. This systematic review was conducted according to the statements of PRISMA and was registered at PROSPERO under the number CRD42016043258

    Microstructure identification via detrended fluctuation analysis of ultrasound signals

    Full text link
    We describe an algorithm for simulating ultrasound propagation in random one-dimensional media, mimicking different microstructures by choosing physical properties such as domain sizes and mass densities from probability distributions. By combining a detrended fluctuation analysis (DFA) of the simulated ultrasound signals with tools from the pattern-recognition literature, we build a Gaussian classifier which is able to associate each ultrasound signal with its corresponding microstructure with a very high success rate. Furthermore, we also show that DFA data can be used to train a multilayer perceptron which estimates numerical values of physical properties associated with distinct microstructures.Comment: Submitted to Phys. Rev.

    Building a Robust, Densely-Sampled Spider Tree of Life for Ecosystem Research

    Get PDF
    Phylogenetic relatedness is a key diversity measure for the analysis and understanding of how species and communities evolve across time and space. Understanding the nonrandom loss of species with respect to phylogeny is also essential for better-informed conservation decisions. However, several factors are known to influence phylogenetic reconstruction and, ultimately, phylogenetic diversity metrics. In this study, we empirically tested how some of these factors (topological constraint, taxon sampling, genetic markers and calibration) affect phylogenetic resolution and uncertainty. We built a densely sampled, species-level phylogenetic tree for spiders, combining Sanger sequencing of species from local communities of two biogeographical regions (Iberian Peninsula and Macaronesia) with a taxon-rich backbone matrix of Genbank sequences and a topological constraint derived from recent phylogenomic studies. The resulting tree constitutes the most complete spider phylogeny to date, both in terms of terminals and background information, and may serve as a standard reference for the analysis of phylogenetic diversity patterns at the community level. We then used this tree to investigate how partial data affect phylogenetic reconstruction, phylogenetic diversity estimates and their rankings, and, ultimately, the ecological processes inferred for each community. We found that the incorporation of a single slowly evolving marker (28S) to the DNA barcode sequences from local communities, had the highest impact on tree topology, closely followed by the use of a backbone matrix. The increase in missing data resulting from combining partial sequences from local communities only had a moderate impact on the resulting trees, similar to the difference observed when using topological constraints. Our study further revealed substantial differences in both the phylogenetic structure and diversity rankings of the analyzed communities estimated from the different phylogenetic treatments, especially when using non-ultrametric trees (phylograms) instead of time-stamped trees (chronograms). Finally, we provide some recommendations on reconstructing phylogenetic trees to infer phylogenetic diversity within ecological studies

    Building a Robust, Densely-Sampled Spider Tree of Life for Ecosystem Research

    Full text link
    Phylogenetic relatedness is a key diversity measure for the analysis and understanding of how species and communities evolve across time and space. Understanding the nonrandom loss of species with respect to phylogeny is also essential for better-informed conservation decisions. However, several factors are known to influence phylogenetic reconstruction and, ultimately, phylogenetic diversity metrics. In this study, we empirically tested how some of these factors (topological constraint, taxon sampling, genetic markers and calibration) affect phylogenetic resolution and uncertainty. We built a densely sampled, species-level phylogenetic tree for spiders, combining Sanger sequencing of species from local communities of two biogeographical regions (Iberian Peninsula and Macaronesia) with a taxon-rich backbone matrix of Genbank sequences and a topological constraint derived from recent phylogenomic studies. The resulting tree constitutes the most complete spider phylogeny to date, both in terms of terminals and background information, and may serve as a standard reference for the analysis of phylogenetic diversity patterns at the community level. We then used this tree to investigate how partial data affect phylogenetic reconstruction, phylogenetic diversity estimates and their rankings, and, ultimately, the ecological processes inferred for each community. We found that the incorporation of a single slowly evolving marker (28S) to the DNA barcode sequences from local communities, had the highest impact on tree topology, closely followed by the use of a backbone matrix. The increase in missing data resulting from combining partial sequences from local communities only had a moderate impact on the resulting trees, similar to the difference observed when using topological constraints. Our study further revealed substantial differences in both the phylogenetic structure and diversity rankings of the analyzed communities estimated from the different phylogenetic treatments, especially when using non-ultrametric trees (phylograms) instead of time-stamped trees (chronograms). Finally, we provide some recommendations on reconstructing phylogenetic trees to infer phylogenetic diversity within ecological studies

    A biodiversidade terrestre e dulçaquícola dos arquipélagos da Madeira e das Selvagens

    Get PDF
    As ilhas atlânticas dos Açores, Madeira, Selvagens, Canárias e Cabo Verde constituem uma das regiões da Europa mais ricas em diversidade de fungos, plantas e animais. Desde 2004 que a inventariação detalhada da diversidade destas ilhas tem sido um dos principais objectivos dos projectos ATLÂNTICO e BIONATURA (incluídos no projecto EU INTERREG IIIB). Este livro é a mais recente contribuição destes projectos, apresentando uma lista de todos os fungos, flora e fauna terrestre conhecida, incluindo a dulçaquícola, para dois arquipélagos atlânticos (Madeira e Selvagens). A lista abrange o arquipélago da Madeira, constituído por duas ilhas de maiores dimensões (Madeira e Porto Santo) e três pequenas, cujo conjunto constitui as Desertas (Ilhéu Chão, Deserta Grande e Bugio), e ainda o arquipélago das Selvagens, formado por duas pequenas ilhas (Selvagem Grande e Selvagem Pequena) e um ilhéu (Ilhéu de Fora).ABSTRACT: The Azores, Madeira, Selvagens, Canary Islands and Cape Verde are among the richest regions in Fungi, plant and animal diversity in Europe. The main objectives of the EU INTERREG IIIB projects ATLÂNTICO and BIONATURA have been, since 2004, to carry out a detailed inventory of the terrestrial Fungi, Flora and Fauna of these archipelagos. This book, encompassing a checklist of all the known terrestrial and freshwater Fungi, Flora and Fauna of Madeira and Selvagens archipelagos is the latest contribution towards that goal. The geographic scope of this checklist includes the Madeira archipelago, composed of two large islands (Madeira and Porto Santo) and three small islands, which are globally named Desertas (Ilhéu Chão, Deserta Grande and Bugio), and the archipelago of Selvagens with two small islands (Selvagem Grande and Selvagem Pequena) and one islet (Ilhéu de Fora)
    corecore