14,313 research outputs found

    Improved Constraints on Cosmic Microwave Background Secondary Anisotropies from the Complete 2008 South Pole Telescope Data

    Get PDF
    We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological parameter estimator which fits multi-frequency models to the SPT 150 and 220 GHz bandpowers. We find an excellent fit to the measured bandpowers with a model that includes lensed primary CMB anisotropy, secondary thermal (tSZ) and kinetic (kSZ) Sunyaev-Zel'dovich anisotropies, unclustered synchrotron point sources, and clustered dusty point sources. In addition to measuring the power spectrum of dusty galaxies at high signal-to-noise, the data primarily constrain a linear combination of the kSZ and tSZ anisotropy contributions at 150 GHz and ℓ = 3000: D^(tSZ) ^(3000) + 0.5 D_(kSZ)^(3000) = 4.5 ± 1.0 μK^2. The 95% confidence upper limits on secondary anisotropy power are D ^(tSZ)_(3000) < 5.3 μK^2 and D^(kSZ)_(3000) < 6.5 μK^2. We also consider the potential correlation of dusty and tSZ sources and find it incapable of relaxing the tSZ upper limit. These results increase the significance of the lower than expected tSZ amplitude previously determined from SPT power spectrum measurements. We find that models including non-thermal pressure support in groups and clusters predict tSZ power in better agreement with the SPT data. Combining the tSZ power measurement with primary CMB data halves the statistical uncertainty on σ8. However, the preferred value of σ8 varies significantly between tSZ models. Improved constraints on cosmological parameters from tSZ power spectrum measurements require continued progress in the modeling of the tSZ power

    Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice

    Full text link
    We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results

    Fabrication of antenna-coupled KID array for Cosmic Microwave Background detection

    Full text link
    Kinetic Inductance Detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000)O(500,000) detectors needed for the upcoming Cosmic Microwave Background - Stage 4 (CMB-S4) experiment. We have fabricated antenna-coupled MKID array in the 150GHz band optimized for CMB detection. Our design uses a twin slot antenna coupled to inverted microstrip made from a superconducting Nb/Al bilayer and SiNx_x, which is then coupled to an Al KID grown on high resistivity Si. We present the fabrication process and measurements of SiNx_x microstrip resonators.Comment: 7 pages, 9 figures, submitted to Journal of Low Temperature Physic

    Andreev scattering in nanoscopic junctions at high magnetic fields

    Full text link
    We report on the measurement of multiple Andreev resonances at atomic size point contacts between two superconducting nanostructures of Pb under magnetic fields higher than the bulk critical field, where superconductivity is restricted to a mesoscopic region near the contact. The small number of conduction channels in this type of contacts permits a quantitative comparison with theory through the whole field range. We discuss in detail the physical properties of our structure, in which the normal bulk electrodes induce a proximity effect into the mesoscopic superconducting part.Comment: 4 page
    corecore