5,534 research outputs found

    Local Spin Glass Order in 1D

    Get PDF
    We study the behavior of one dimensional Kac spin glasses as function of the interaction range. We verify by Montecarlo numerical simulations the crossover from local mean field behavior to global paramagnetism. We investigate the behavior of correlations and find that in the low temperature phase correlations grow at a faster rate then the interaction range. We completely characterize the growth of correlations in the vicinity of the mean-field critical region

    Complementary action of chemical and electrical synapses to perception

    Get PDF
    Acknowledgements This study was possible by partial financial support from the following agencies: Fundação Araucária, EPSRC-EP/I032606/1, CNPq No. 441553/2014-1, CAPES No. 17656-12-5 and Science Without Borders Program— Process Nos. 17656125, 99999.010583/2013-00 and 245377/2012-3.Peer reviewedPostprin

    Cosmological Implications of the Fundamental Relations of X-ray Clusters

    Get PDF
    Based on the two-parameter family nature of X-ray clusters of galaxies obtained in a separate paper, we discuss the formation history of clusters and cosmological parameters of the universe. Utilizing the spherical collapse model of cluster formation, and assuming that the cluster X-ray core radius is proportional to the virial radius at the time of the cluster collapse, the observed relations among the density, radius, and temperature of clusters imply that cluster formation occurs in a wide range of redshift. The observed relations favor the low-density universe. Moreover, we find that the model of n∌−1n\sim -1 is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter

    Infinitely Many Stochastically Stable Attractors

    Full text link
    Let f be a diffeomorphism of a compact finite dimensional boundaryless manifold M exhibiting infinitely many coexisting attractors. Assume that each attractor supports a stochastically stable probability measure and that the union of the basins of attraction of each attractor covers Lebesgue almost all points of M. We prove that the time averages of almost all orbits under random perturbations are given by a finite number of probability measures. Moreover these probability measures are close to the probability measures supported by the attractors when the perturbations are close to the original map f.Comment: 14 pages, 2 figure

    Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study

    Get PDF
    Combining conservation of energy throughout nearly-spherical collapse of galaxy clusters with the virial theorem, we derive the mass-temperature relation for X-ray clusters of galaxies T=CM2/3T=CM^{2/3}. The normalization factor CC and the scatter of the relation are determined from first principles with the additional assumption of initial Gaussian random field. We are also able to reproduce the recently observed break in the M-T relation at T \sim 3 \keV, based on the scatter in the underlying density field for a low density Λ\LambdaCDM cosmology. Finally, by combining observational data of high redshift clusters with our theoretical formalism, we find a semi-empirical temperature-mass relation which is expected to hold at redshifts up to unity with less than 20% error.Comment: 43 pages, 13 figures, One figure is added and minor changes are made. Accepted for Publication in Ap

    Towards absolute calibration of optical tweezers

    Get PDF
    Aiming at absolute force calibration of optical tweezers, following a critical review of proposed theoretical models, we present and test the results of MDSA (Mie-Debye-Spherical Aberration) theory, an extension of a previous (MD) model, taking account of spherical aberration at the glass/water interface. This first-principles theory is formulated entirely in terms of experimentally accessible parameters (none adjustable). Careful experimental tests of the MDSA theory, undertaken at two laboratories, with very different setups, are described. A detailed description is given of the procedures employed to measure laser beam waist, local beam power at the transparent microspheres trapped by the tweezers, microsphere radius and the trap transverse stiffness, as a function of radius and height in the (inverted microscope) sample chamber. We find generally very good agreement with MDSA theory predictions, for a wide size range, from the Rayleigh domain to large radii, including the values most often employed in practice, and at different chamber heights, both with objective overfilling and underfilling. The results asymptotically approach geometrical optics in the mean over size intervals, as they should, and this already happens for size parameters not much larger than unity. MDSA predictions for the trapping threshold, position of stiffness peak, stiffness variation with height, multiple equilibrium points and `hopping' effects among them are verified. Remaining discrepancies are ascribed to focus degradation, possibly arising from objective aberrations in the infrared, not yet included in MDSA theory.Comment: 15 pages, 20 figure
    • 

    corecore