32 research outputs found

    Euler-Heisenberg lagrangians and asymptotic analysis in 1+1 QED, part 1: Two-loop

    Full text link
    We continue an effort to obtain information on the QED perturbation series at high loop orders, and particularly on the issue of large cancellations inside gauge invariant classes of graphs, using the example of the l - loop N - photon amplitudes in the limit of large photons numbers and low photon energies. As was previously shown, high-order information on these amplitudes can be obtained from a nonperturbative formula, due to Affleck et al., for the imaginary part of the QED effective lagrangian in a constant field. The procedure uses Borel analysis and leads, under some plausible assumptions, to a number of nontrivial predictions already at the three-loop level. Their direct verification would require a calculation of this `Euler-Heisenberg lagrangian' at three-loops, which seems presently out of reach. Motivated by previous work by Dunne and Krasnansky on Euler-Heisenberg lagrangians in various dimensions, in the present work we initiate a new line of attack on this problem by deriving and proving the analogous predictions in the simpler setting of 1+1 dimensional QED. In the first part of this series, we obtain a generalization of the formula of Affleck et al. to this case, and show that, for both Scalar and Spinor QED, it correctly predicts the leading asymptotic behaviour of the weak field expansion coefficients of the two loop Euler-Heisenberg lagrangians.Comment: 28 pages, 1 figures, final published version (minor modifications, refs. added

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    ALP production through non-linear Compton scattering in intense fields

    Get PDF
    23 pages, 14 figuresWe derive production yields for massive pseudo-scalar and scalar axion-like-particles (ALPs), through non-linear Compton scattering of an electron in the background of low- and high-intensity electromagnetic fields. In particular, we focus on electromagnetic fields from Gaussian plane wave laser pulses. A detailed study of the angular distributions and effects of the scalar and pseudo-scalar masses is presented. It is shown that ultra-relativistic seed electrons can be used to produce scalars and pseudo-scalars with masses up to the order of the electron mass. We briefly discuss future applications of this work towards lab-based searches for light beyond-the-Standard-Model particles

    Introduction

    No full text
    corecore