23 research outputs found

    An enhanced partial order curve comparison algorithm and its application to analyzing protein folding trajectories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them.</p> <p>Results</p> <p>In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the <it>enhanced partial order (EPO) </it>algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events.</p> <p>Conclusion</p> <p>The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at <url>http://db.cse.ohio-state.edu/EPO</url>.</p

    Calculation of the Free Energy and Cooperativity of Protein Folding

    Get PDF
    Calculation of the free energy of protein folding and delineation of its pre-organization are of foremost importance for understanding, predicting and designing biological macromolecules. Here, we introduce an energy smoothing variant of parallel tempering replica exchange Monte Carlo (REMS) that allows for efficient configurational sampling of flexible solutes under the conditions of molecular hydration. Its usage to calculate the thermal stability of a model globular protein, Trp cage TC5b, achieves excellent agreement with experimental measurements. We find that the stability of TC5b is attained through the coupled formation of local and non-local interactions. Remarkably, many of these structures persist at high temperature, concomitant with the origin of native-like configurations and mesostates in an otherwise macroscopically disordered unfolded state. Graph manifold learning reveals that the conversion of these mesostates to the native state is structurally heterogeneous, and that the cooperativity of their formation is encoded largely by the unfolded state ensemble. In all, these studies establish the extent of thermodynamic and structural pre-organization of folding of this model globular protein, and achieve the calculation of macromolecular stability ab initio, as required for ab initio structure prediction, genome annotation, and drug design

    A Coarse-Grained Protein Model in a Water-like Solvent

    Get PDF
    Simulations employing an explicit atom description of proteins in solvent can be computationally expensive. On the other hand, coarse-grained protein models in implicit solvent miss essential features of the hydrophobic effect, especially its temperature dependence, and have limited ability to capture the kinetics of protein folding. We propose a free space two-letter protein (“H-P”) model in a simple, but qualitatively accurate description for water, the Jagla model, which coarse-grains water into an isotropically interacting sphere. Using Monte Carlo simulations, we design protein-like sequences that can undergo a collapse, exposing the “Jagla-philic” monomers to the solvent, while maintaining a “hydrophobic” core. This protein-like model manifests heat and cold denaturation in a manner that is reminiscent of proteins. While this protein-like model lacks the details that would introduce secondary structure formation, we believe that these ideas represent a first step in developing a useful, but computationally expedient, means of modeling proteins
    corecore