26 research outputs found

    Class IA PI3Kinase Regulatory Subunit, p85α, Mediates Mast Cell Development through Regulation of Growth and Survival Related Genes

    Get PDF
    Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1A PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes

    Association of mast cells with lung function in chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: In asthma, higher chymase positive mast cell (MC-C) numbers are associated with less airway obstruction. In COPD, the distribution of MC-C and tryptase positive mast cells (MC-T) in central and peripheral airways, and their relation with lung function, is unknown. We compared MC-T and MC-C distributions in COPD and controls without airflow limitation, and determined their relation with lung function. METHODS: Lung tissue sections from 19 COPD patients (median [interquartile range] FEV(1)% predicted 56 [23–75]) and 10 controls were stained for tryptase and chymase. Numbers of MC-T and MC-C were determined in different regions of central and peripheral airways and percentage of degranulation was determined. RESULTS: COPD patients had lower MC-T numbers in the subepithelial area of central airways than controls. In COPD, MC-T numbers in the airway wall and more specifically in the epithelium and subepithelial area of peripheral airways correlated positively with FEV(1)/VC (Spearman's rho (r(s)) 0.47, p = 0.05 and r(s )0.48, p = 0.05, respectively); MC-C numbers in airway smooth muscle of peripheral airways correlated positively with FEV(1)% predicted (r(s )0.57, p = 0.02). Both in COPD patients and controls the percentage of degranulated MC-T and MC-C mast cells was higher in peripheral than in central airways (all p < 0.05), but this was not different between the groups. CONCLUSION: More MC-T and MC-C in peripheral airways correlate with better lung function in COPD patients. It is yet to determine whether this reflects a protective association of mast cells with COPD pathogenesis, or that other explanations are to be considered
    corecore