12 research outputs found

    Low investment in sexual reproduction threatens plants adapted to phosphorus limitation

    No full text
    Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained by selected plant life-history traits, notably by plant investments in growth versus reproduction. In 599 Eurasian sites with herbaceous vegetation we examined the relationship between the local nutrient conditions and community-mean life-history traits. We found that compared with plants in nitrogen-limited communities, plants in phosphorus-limited communities invest little in sexual reproduction (for example, less investment in seed, shorter flowering period, longer lifespan) and have conservative leaf economy traits (that is, a low specific leaf area and a high leaf dry-matter content). Endangered species were more frequent in phosphorus-limited ecosystems and they too invested little in sexual reproduction. The results provide new insight into how plant adaptations to nutrient conditions can drive the distribution of plant species in natural ecosystems and can account for the vulnerability of endangered species. © 2014 Macmillan Publishers Limited

    Temporal and small-scale spatial variation in grassland productivity, biomass quality, and nutrient limitation

    No full text
    Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly

    Restoration of brook valley meadows in the Netherlands

    No full text
    Until recently, restoration measures in Dutch brook valley meadows consisted of re-introducing traditional management techniques, such as mowing without fertilisation and low-intensity grazing. In the Netherlands, additional measures, such as rewetting and sod cutting, are now carried out on a large scale to combat negative influences of drainage and acidifying influences by atmospheric deposition. An analysis of successful and unsuccessful projects shows that restoration of brook valley meadows is most successful if traditional management techniques are applied in recently abandoned fields that had not been drained or fertilised. Large-scale topsoil removal in former agricultural fields that had been used intensively for several decades is often unsuccessful since seed banks are depleted, while hydrological conditions and seed dispersal mechanisms are sub-optimal. In areas with an organic topsoil, long-term drainage had often led to irreversible changes in chemical and physical properties of the soil. Successful sites were all characterised by a regular discharge of calcareous groundwater provided by local or regional hydrological systems, and, where not very long ago, populations of target species existed. On mineral soils, in particular, sod removal in established nature reserves was a successful measure to increase the number of endangered fen meadow species. It is argued that attempts to restore species-rich meadows should be avoided on former agricultural fields, where pedological processeshave led to almost irreversible changes in the soil profile and where soil seed banks have been completely depleted. From a soil conservation point of view, such areas should be exploited as eutrophic wetlands that are regularly flooded
    corecore