22 research outputs found
Defective planar cell polarity in polycystic kidney disease
International audienceMorphogenesis involves coordinated proliferation, differentiation and spatial distribution of cells. We show that lengthening of renal tubules is associated with mitotic orientation of cells along the tubule axis, demonstrating intrinsic planar cell polarization, and we demonstrate that mitotic orientations are significantly distorted in rodent polycystic kidney models. These results suggest that oriented cell division dictates the maintenance of constant tubule diameter during tubular lengthening and that defects in this process trigger renal tubular enlargement and cyst formation
The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat.
Meckel-Gruber syndrome is a severe autosomal, recessively inherited disorder characterized by bilateral renal cystic dysplasia, developmental defects of the central nervous system ( most commonly occipital encephalocele), hepatic ductal dysplasia and cysts and polydactyly(1-3). MKS is genetically heterogeneous, with three loci mapped: MKS1, 17q21-24 (ref. 4); MKS2, 11q13 ( ref. 5) and MKS3 ( ref. 6). We have refined MKS3 mapping to a 12.67-Mb interval (8q21.13-q22.1) that is syntenic to the Wpk locus in rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus(7,8). Positional cloning of the Wpk gene suggested a MKS3 candidate gene, TMEM67, for which we identified pathogenic mutations for five MKS3-linked consanguineous families. MKS3 is a previously uncharacterized, evolutionarily conserved gene that is expressed at moderate levels in fetal brain, liver and kidney but has widespread, low levels of expression. It encodes a 995 - amino acid seven-transmembrane receptor protein of unknown function that we have called meckelin