15 research outputs found

    A miRNA Signature of Prion Induced Neurodegeneration

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion–induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified

    Activation of cord blood myeloid dendritic cells by Trypanosoma cruzi and parasite-specific antibodies, proliferation of CD8+ T cells, and production of IFN-Îł.

    No full text
    We previously reported that Trypanosoma cruzi, the agent of Chagas disease, induces in congenitally infected fetuses a strong, adult-like parasite-specific CD8(+) T cell response producing IFN-Îł (Hermann et al. in Blood 100:2153-2158, 2002). This suggests that the parasite is able to overcome the immaturity of neonatal antigen presenting cells, an issue which has not been previously addressed. We therefore investigated in vitro the ability of T. cruzi to activate cord blood DCs and compared its effect to that on adult cells. We show that T. cruzi induces phenotypic maturation of cord blood CD11c(+) myeloid DCs (mDCs), by enhancing surface expression of CD40, CD80, and CD83, and that parasite-specific IgG purified from cord blood of neonates born to T. cruzi-infected mothers amplify such expression. CD83, considered as the best marker of mature DCs, reaches higher level on cord blood than on adult mDCs. Allo-stimulation experiments showed that T. cruzi-activated cord blood mononuclear cells enriched in DCs (eDCs) stimulate proliferation of cord blood and adult CD3(+) T cells to a similar extent. Of note, T. cruzi-activated eDCs from cord blood trigger more potent proliferation of CD8(+) than CD8(-) (mainly CD4(+)) adult T cells, a feature not observed with adult eDCs. T cell proliferation is associated with IFN-Îł release and down-regulation of IL-13 production. These data show that T. cruzi potently activates human cord blood mDCs and endows eDCs to trigger CD8(+) T cell proliferation and favor type 1 immune response. Interestingly, maternal antibodies can strengthen the development of mature DCs that might contribute to overcome the immunological immaturity associated with early life.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore