428 research outputs found
Can contrast-enhanced MR imaging predict survival in breast cancer?
PURPOSE: To investigate the value of pre-operative contrast-enhanced MR imaging (CE-MRI) in predicting the disease-free and overall survival in breast cancer. MATERIAL AND METHODS: The study population consisted of 50 consecutive patients with histopathologically verified primary breast cancer who pre-operatively underwent CE-MRI examination between 1992 and 1993. A three-time point MR examination was performed where the enhancement rates (C1 and C2), signal enhancement ratio (SER=C1/C2) and washout (W=C1-C2) were calculated. The relation of these MR parameters to disease-free and overall survival was investigated. The median follow-up for surviving patients was 95 months. Univariate and multivariate statistical analyses were performed to evaluate the impact of different factors on prediction of survival. RESULTS: Of the MR parameters examined at univariate analysis, increased C1 (p=0.029), W (p=0.0081) and SER values (p=0.0081) were significantly associated with shorter disease-free survival, and only C1 (p=0.016) was related significantly to overall survival. Multivariate analysis for disease-free survival showed that the SER (p=0.014) and tumor size (p=0.001) were significant and independent predictors. Age (p=0.003), lymph node status (p=0.014), tumor size (p=0.039) and proliferating cell nuclear antigen index (p=0.053) remained independently associated with overall survival at multivariate analysis. C1 was not confirmed as an independent predictor of overall survival. CONCLUSION: Our findings support the presumption that CE-MRI is useful in predicting the disease-free survival in patients with breast cancer
Development of microsatellite markers for Rhodiola rosea
Rhodiola rosea L. is an important adaptogen medicinal plant. In this study two new microsatellite markers were developed. The assessment of the genetic diversity of R. rosea has recently started with molecular markers, but only a few species-specific microsatellite markers have been published so far. However the small number of markers allows only a limited insight into the genetic variability of the species therefore the aim of our work was to develop new microsatellite markers for R. rosea with a microsatellite enrichment library technique. Genomic DNA was cleaved with an endonuclease enzyme followed by adaptor ligation and PCR amplification. DNA fragments that contained microsatellites were first isolated using a biotin-streptavidin linkage based magnetic selection and then cloned into plasmids. Out of forty-three sequenced clones three contained microsatellites, in these cases primers were designed for the amplification of the microsatellite repeats. The newly developed primer pairs were tested on individuals from distant R. rosea populations and the variability of the amplified fragments was estimated by fragment-length analysis. The locus RhpB14a was found to be monomorphic while RhpB14b and RhpB13 were polymorphic. As a result of the present study, two novel variable microsatellite loci were identified in the genome of R. rosea
Development of microsatellite markers for Rhodiola rosea
Rhodiola rosea L. is an important adaptogen medicinal plant. In this study two new microsatellite markers were developed. The assessment of the genetic diversity of R. rosea has recently started with molecular markers, but only a few species-specific microsatellite markers have been published so far. However the small number of markers allows only a limited insight into the genetic variability of the species therefore the aim of our work was to develop new microsatellite markers for R. rosea with a microsatellite enrichment library technique. Genomic DNA was cleaved with an endonuclease enzyme followed by adaptor ligation and PCR amplification. DNA fragments that contained microsatellites were first isolated using a biotin-streptavidin linkage based magnetic selection and then cloned into plasmids. Out of forty-three sequenced clones three contained microsatellites, in these cases primers were designed for the amplification of the microsatellite repeats. The newly developed primer pairs were tested on individuals from distant R. rosea populations and the variability of the amplified fragments was estimated by fragment-length analysis. The locus RhpB14a was found to be monomorphic while RhpB14b and RhpB13 were polymorphic. As a result of the present study, two novel variable microsatellite loci were identified in the genome of R. rosea
Dewetting of thin polymer films near the glass transition
Dewetting of ultra-thin polymer films near the glass transition exhibits
unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)].
We present here the first theoretical attempt to understand these features,
focusing on the shear-thinning behaviour of these films. We analyse the profile
of the dewetting film, and characterize the time evolution of the dry region
radius, , and of the rim height, . After a transient time
depending on the initial thickness, grows like while
increases like . Different regimes of growth are
expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review
Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88,
196101 (2002
Slow dynamics near glass transitions in thin polymer films
The -process (segmental motion) of thin polystyrene films supported
on glass substrate has been investigated in a wider frequency range from
10 Hz to 10 Hz using dielectric relaxation spectroscopy and thermal
expansion spectroscopy. The relaxation rate of the -process increases
with decreasing film thickness at a given temperature above the glass
transition. This increase in the relaxation rate with decreasing film thickness
is much more enhanced near the glass transition temperature. The glass
transition temperature determined as the temperature at which the relaxation
time of the -process becomes a macroscopic time scale shows a distinct
molecular weight dependence. It is also found that the Vogel temperature has
the thickness dependence, i.e., the Vogel temperature decreases with decreasing
film thickness. The expansion coefficient of the free volume is
extracted from the temperature dependence of the relaxation time within the
free volume theory. The fragility index is also evaluated as a function of
thickness. Both and are found to decrease with decreasing film
thickness.Comment: 9 pages, 7 figures, and 2 table
Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory
The technique used at the Sudbury Neutrino Observatory (SNO) to measure the
concentration of 222Rn in water is described. Water from the SNO detector is
passed through a vacuum degasser (in the light water system) or a membrane
contact degasser (in the heavy water system) where dissolved gases, including
radon, are liberated. The degasser is connected to a vacuum system which
collects the radon on a cold trap and removes most other gases, such as water
vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have
been sampled, the accumulated radon is transferred to a Lucas cell. The cell is
mounted on a photomultiplier tube which detects the alpha particles from the
decay of 222Rn and its daughters. The overall degassing and concentration
efficiency is about 38% and the single-alpha counting efficiency is
approximately 75%. The sensitivity of the radon assay system for D2O is
equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O
and D2O is sufficiently low that the rate of background events from U-chain
elements is a small fraction of the interaction rate of solar neutrinos by the
neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change
The Calcitonin Receptor Gene Is a Candidate for Regulation of Susceptibility to Herpes simplex Type 1 Neuronal Infection Leading to Encephalitis in Rat
Herpes simplex encephalitis (HSE) is a fatal infection of the central nervous system (CNS) predominantly caused by Herpes simplex virus type 1. Factors regulating the susceptibility to HSE are still largely unknown. To identify host gene(s) regulating HSE susceptibility we performed a genome-wide linkage scan in an intercross between the susceptible DA and the resistant PVG rat. We found one major quantitative trait locus (QTL), Hse1, on rat chromosome 4 (confidence interval 24.3–31 Mb; LOD score 29.5) governing disease susceptibility. Fine mapping of Hse1 using recombinants, haplotype mapping and sequencing, as well as expression analysis of all genes in the interval identified the calcitonin receptor gene (Calcr) as the main candidate, which also is supported by functional studies. Thus, using unbiased genetic approach variability in Calcr was identified as potentially critical for infection and viral spread to the CNS and subsequent HSE development
Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity
Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.This work was supported by the CounterACT Program, National Institutes of Health, Office of the Director, and the National Institute of Environmental Health Sciences grant U54 ES015678 (C.W.W.), and by Children’s Hospital of Colorado/Colorado School of Mines Pilot Award G0100394 and a Children’s Hospital of Colorado Research Institute’s Pilot Award (S.A.)
- …