9 research outputs found

    Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints

    Get PDF
    We review theoretical developments in studies of dense matter and its phase structure of relevance to compact stars. Observational data on compact stars, which can constrain the properties of dense matter, are presented critically and interpreted.Comment: Annu. Rev. Nucl. & Part. Sci. in press. 51 pages, 17 figure

    A Tale of Two Current Sheets

    Full text link
    I outline a new model of particle acceleration in the current sheet separating the closed from the open field lines in the force-free model of pulsar magnetospheres, based on reconnection at the light cylinder and "auroral" acceleration occurring in the return current channel that connects the light cylinder to the neutron star surface. I discuss recent studies of Pulsar Wind Nebulae, which find that pair outflow rates in excess of those predicted by existing theories of pair creation occur, and use those results to point out that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the "σ\sigma" problem as a consequence of the lower wind 4-velocity implied by the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant

    No full text
    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars1. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia?A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others2, 3, 4, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers5, 6 and also identifies the compact source as a very young (~330-year-old) neutron sta
    corecore