45 research outputs found

    Two Simple W' Models for the Early LHC

    Full text link
    W' gauge bosons are good candidates for early LHC discovery. We define two reference models, one containing a W'_R and one containing a W'_L, which may serve as ``simplified models'' for presenting experimental results of W' searches at the LHC. We present the Tevatron bounds on each model and compute the constraints from precision electroweak observables. We find that indirect low-energy constraints on the W'_L are quite strong. However, for a W'_R coupling to right-handed fermions there exists a sizeable region in parameter space beyond the bounds from the Tevatron and low-energy precision measurements where even 50 inverse picobarns of integrated LHC luminosity are sufficient to discover the W'_R. The most promising final states are two leptons and two jets, or one lepton recoiling against a ``neutrino jet''. A neutrino jet is a collimated object consisting of a hard lepton and two jets arising from the decay of a highly boosted massive neutrino.Comment: 20 pages, 8 figures. v2: references adde

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure

    Composite Higgs Search at the LHC

    Full text link
    The Higgs boson production cross-sections and decay rates depend, within the Standard Model (SM), on a single unknown parameter, the Higgs mass. In composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone boson from a strongly-interacting sector, additional parameters control the Higgs properties which then deviate from the SM ones. These deviations modify the LEP and Tevatron exclusion bounds and significantly affect the searches for the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced, which results in deterioration of the Higgs searches but the deviations of the Higgs couplings can also allow for an enhancement of the gluon-fusion production channel, leading to higher statistical significances. The search in the H to gamma gamma channel can also be substantially improved due to an enhancement of the branching fraction for the decay of the Higgs boson into a pair of photons.Comment: 32 pages, 16 figure

    Sparticle mass spectra from SU(5) SUSY GUT models with bτb-\tau Yukawa coupling unification

    Full text link
    Supersymmetric grand unified models based on the gauge group SU(5) often require in addition to gauge coupling unification, the unification of b-quark and τ\tau-lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space under the condition of bτb-\tau Yukawa coupling unification using 2-loop MSSM RGEs including full 1-loop threshold effects. The Yukawa-unified solutions break down into two classes. Solutions with low tan\beta ~3-11 are characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these solutions would be beyond LHC reach, although they contain a light Higgs scalar with mass <123 GeV and so may be excluded should the LHC Higgs hint persist. The second class of solutions occurs at large tan\beta ~35-60, and are a subset of tbτt-b-\tau unified solutions. Constraining only bτb-\tau unification to ~5% favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be accessible to LHC searches. While our bτb-\tau unified solutions can be consistent with a picture of neutralino-only cold dark matter, invoking additional moduli or Peccei-Quinn superfields can allow for all of our Yukawa-unified solutions to be consistent with the measured dark matter abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate

    General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles

    Get PDF
    In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the deflected AMSB, we also define the new indices for the gaugino mass relations, and calculate them as well. Using these gaugino mass relations and their indices, we may probe the messenger fields at intermediate scale in the GMSB and deflected AMSB, determine the supersymmetry breaking mediation mechanisms, and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.Comment: RevTex4, 45 pages, 15 tables, version to appear in JHE

    Yukawa-unified natural supersymmetry

    Get PDF
    Previous work on t-b-\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\sim125 GeV. As Yukawa unification requires large tan\beta\sim50, while EWFT requires rather light third generation squarks and low \mu\sim100-250 GeV, B-physics constraints from BR(B\to X_s\gamma) and BR(B_s\to \mu+\mu-) can be severe. We are able to find models with EWFT \Delta\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1-2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A\to \mu+\mu- decay might allow a determination of tan\beta\sim50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e+e- collider with \sqrt{s}\sim0.5 TeV.Comment: 18 pages, 7 figures, pdflatex; 3 references adde

    An Alternative Yukawa Unified SUSY Scenario

    Full text link
    Supersymmetric SO(10) Grand Unified Theories with Yukawa unification represent an appealing possibility for physics beyond the Standard Model. However Yukawa unification is made difficult by large threshold corrections to the bottom mass. Generally one is led to consider models where the sfermion masses are large in order to suppress these corrections. Here we present another possibility, in which the top and bottom GUT scale Yukawa couplings are equal to a component of the charged lepton Yukawa matrix at the GUT scale in a basis where this matrix is not diagonal. Physically, this weak eigenstate Yukawa unification scenario corresponds to the case where the charged leptons that are in the 16 of SO(10) containing the top and bottom quarks mix with their counterparts in another SO(10) multiplet. Diagonalizing the resulting Yukawa matrix introduces mixings in the neutrino sector. Specifically we find that for a large region of parameter space with relatively light sparticles, and which has not been ruled out by current LHC or other data, the mixing induced in the neutrino sector is such that sin22Θ231sin^2 2\Theta_{23} \approx 1, in agreement with data. The phenomenological implications are analyzed in some detail.Comment: 32 pages, 22 Figure

    Decoupling property of the supersymmetric Higgs sector with four doublets

    Full text link
    In supersymmetric standard models with multi Higgs doublet fields, selfcoupling constants in the Higgs potential come only from the D-terms at the tree level. We investigate the decoupling property of additional two heavier Higgs doublet fields in the supersymmetric standard model with four Higgs doublets. In particular, we study how they can modify the predictions on the quantities well predicted in the minimal supersymmetric standard model (MSSM), when the extra doublet fields are rather heavy to be measured at collider experiments. The B-term mixing between these extra heavy Higgs bosons and the relatively light MSSM-like Higgs bosons can significantly change the predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well as the mixing angle for the two light CP-even scalar states. We first give formulae for deviations in the observables of the MSSM in the decoupling region for the extra two doublet fields. We then examine possible deviations in the Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in Journal of High Energy Physic

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Sizeable \theta_13 from the Charged Lepton Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP Violation

    Full text link
    The recent results from T2K and MINOS experiments point towards a relatively large value of the reactor angle \theta_13 in the lepton sector. In this paper we show how a large \theta_13 can arise from the charged lepton sector alone in the context of an SU(5) GUT. In such a scenario (tri-)bimaximal mixing in the neutrino sector is still a viable possibility. We also analyse the general implications of the considered scenario for the searches of CP violation in neutrino oscillations.Comment: 19 pages, 3 figures; version to be published in JHE
    corecore